scholarly journals Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion

2014 ◽  
Vol 574 ◽  
pp. 70-75 ◽  
Author(s):  
Gökhan Akdemir ◽  
Julien Ratelade ◽  
Nithi Asavapanumas ◽  
A.S. Verkman
2009 ◽  
pp. 909-912
Author(s):  
VH Ozacmak ◽  
H Sayan

Neuroprotective effects of estrogens and progesterone have been widely studied in various experimental models. The present study was designed to compare possible neuroprotective effects of 17alpha-estradiol, 17beta-estradiol, and progesterone on oxidative stress in rats subjected to global cerebral ischemia. Global cerebral ischemia was induced in ovariectomized female rats by four vessel occlusion for 10 min. Following 72 h of reperfusion, levels of malondialdehyde (MDA, oxidative stress marker), and reduced glutathione (GSH, major endogenous antioxidant) were assessed in hippocampus, striatum and cortex of rats treated with either 17alpha-estradiol, 17beta-estradiol, progesterone or estradiol + progesterone beforehand. Steroid administration ameliorated ischemia-induced decrease in GSH and increase in MDA levels. Our data offers additional evidence that estrogens and progesterone or combination of two exert a remarkable neuroprotective effect reducing oxidative stress.


2010 ◽  
Vol 112 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Qiang Zhou ◽  
Bo Cao ◽  
Li Niu ◽  
Xiaoguang Cui ◽  
Hongwei Yu ◽  
...  

Background Permissive hypercapnia is a widely practiced protective ventilatory strategy that has significant protective effects on several models of in vitro and in vivo neuronal injury. However, conclusive effects of permissive hypercapnia on cerebral ischemia are still unknown. Methods One hundred sixty male Wistar rats were divided into five groups: S group (control), ischemia-reperfusion (I/R) group, P1 group, P2 group, and P3 group. I/R was induced by bilateral occlusion of the common carotid arteries, combined with controlled hypotension for 15 min. In groups P1, P2, and P3, the rats inhaled carbon dioxide for 2 h during reperfusion to keep Paco2 within the ranges of 60-80 mmHg, 80-100 mmHg, and 100-120 mmHg, respectively. After 24 and 72 h, neurologic deficit scores, ultrastructural changes, apoptotic neurons, and brain wet-to-dry weight ratios were observed. Caspase-3 and aquaporin-4 protein expression and caspase-3 activity were analyzed. Results Compared with groups I/R and P3, groups P1 and P2 had better neurologic deficit scores and fewer ultrastructural histopathologic changes. I/R-induced cerebral apoptosis was also significantly reduced. The neuroprotective effect was significantly increased in the P2 group compared with the P1 group. There was a significant increase of brain water content and of aquaporin-4 levels in the P3 group. Conclusions Mild to moderate hypercapnia (Paco2 60-100 mmHg) is neuroprotective after transient global cerebral I/R injury. Such a protection might be associated with apoptosis-regulating proteins. In contrast, severe hypercapnia (Paco2 100-120 mmHg) increased brain injury, which may be caused by increased brain edema.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lixuan Zhan ◽  
Xiaomei Lu ◽  
Wensheng Xu ◽  
Weiwen Sun ◽  
En Xu

Abstract Background Our previous study indicated that hypoxic preconditioning reduced receptor interacting protein (RIP) 3-mediated necroptotic neuronal death in hippocampal CA1 of adult rats after transient global cerebral ischemia (tGCI). Although mixed lineage kinase domain-like (MLKL) has emerged as a crucial molecule for necroptosis induction downstream of RIP3, how MLKL executes necroptosis is not yet well understood. In this study, we aim to elucidate the molecular mechanism underlying hypoxic preconditioning that inactivates MLKL-dependent neuronal necroptosis after tGCI. Methods Transient global cerebral ischemia was induced by the four-vessel occlusion method. Twenty-four hours before ischemia, rats were exposed to systemic hypoxia with 8% O2 for 30 min. Western blotting was used to detect the expression of MLKL and interleukin-1 type 1 receptor (IL-1R1) in CA1. Immunoprecipitation was used to assess the interactions among IL-1R1, RIP3, and phosphorylated MLKL (p-MLKL). The concentration of intracellular free calcium ion (Ca2+) was measured using Fluo-4 AM. Silencing and overexpression studies were used to study the role of p-MLKL in tGCI-induced neuronal death. Results Hypoxic preconditioning decreased the phosphorylation of MLKL both in neurons and microglia of CA1 after tGCI. The knockdown of MLKL with siRNA decreased the expression of p-MLKL and exerted neuroprotective effects after tGCI, whereas treatment with lentiviral delivery of MLKL showed opposite results. Mechanistically, hypoxic preconditioning or MLKL siRNA attenuated the RIP3-p-MLKL interaction, reduced the plasma membrane translocation of p-MLKL, and blocked Ca2+ influx after tGCI. Furthermore, hypoxic preconditioning downregulated the expression of IL-1R1 in CA1 after tGCI. Additionally, neutralizing IL-1R1 with its antagonist disrupted the interaction between IL-1R1 and the necrosome, attenuated the expression and the plasma membrane translocation of p-MLKL, thus alleviating neuronal death after tGCI. Conclusions These data support that the inhibition of MLKL-dependent neuronal necroptosis through downregulating IL-1R1 contributes to neuroprotection of hypoxic preconditioning against tGCI.


2021 ◽  
Vol 352 ◽  
pp. 109090
Author(s):  
Wei Sun ◽  
Yeting Chen ◽  
Yongjie Zhang ◽  
Yue Geng ◽  
Xiaohang Tang ◽  
...  

2004 ◽  
Vol 24 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Ichiro Yonekura ◽  
Nobutaka Kawahara ◽  
Hirofumi Nakatomi ◽  
Kazuhide Furuya ◽  
Takaaki Kirino

A reproducible model of global cerebral ischemia in mice is essential for elucidating the molecular mechanism of ischemic neuronal injury. Such a model is particularly important in the mouse because many genetically engineered mutant animals are available. In C57BL/6 and SV129/EMS mice, we evaluated a three-vessel occlusion model. Occlusion of the basilar artery with a miniature clip was followed by bilateral carotid occlusion. The mean cortical cerebral blood flow was reduced to less than 10% of the preischemic value, and the mean anoxic depolarization was attained within 1 minute. In C57BL/6 mice, there was CA1 hippocampal neuronal degeneration 4 days after ischemia. Neuronal damage depended upon ischemic duration: the surviving neuronal count was 78.5 ± 8.5% after 8-minute ischemia and 8.4 ± 12.7% after 14-minute ischemia. In SV129/EMS mice, similar neuronal degeneration was not observed after 14-minute ischemia. The global ischemia model in C57BL/6 mice showed high reproducibility and consistent neuronal injury in the CA1 sector, indicating that comparison of ischemic outcome between wild-type and mutant mice could provide meaningful data using the C57BL/6 genetic background. Strain differences in this study highlight the need for consideration of genetic background when evaluating ischemia experiments in mice.


2021 ◽  
Author(s):  
Taotao Lu ◽  
Huihong Li ◽  
Yangjie Zhou ◽  
Wei Wei ◽  
Linlin Ding ◽  
...  

Abstract BackgroundNeuroinflammation and apoptosis are involved in the pathogenesis of ischemic stroke. Alisol A 24-acetate (24A) has a strong inhibitory effect on inflammation and cell apoptosis. The neuroprotective effect of 24A in the global cerebral ischemia/ reperfusion (GCI/R) is still unclear. Methods GCI/R mice was used to investigated the neuroprotective effect of 24A. Modified neurological deficit scores, Morris Water Maze and object recognition test were used to evaluate behaviors. The metabolism in brain regions was detected by MRS. The changes of microglia, astrocytes and neurons was detected. The inflammation and apoptosis were measured.Results The results showed that 24A improved behavioral dysfunction and brain metabolism, alleviate neuroinflammation and apoptosis, inhibited microglia and astrocytes activation, which is associated with the activation of PI3K/AKT pathway. ConclusionsTaken together, our study demonstrated that 24A could alleviate GCI/R injury through anti-neuroinflammation and anti-apoptosis via regulating the PI3K/AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document