Functional connectivity in the brain before and during intra-arterial amobarbital injection (Wada test)

NeuroImage ◽  
2009 ◽  
Vol 46 (3) ◽  
pp. 584-588 ◽  
Author(s):  
Linda Douw ◽  
Johannes C. Baayen ◽  
Martin Klein ◽  
Dimitri Velis ◽  
Willem C. Alpherts ◽  
...  
2008 ◽  
Vol 119 ◽  
pp. S24
Author(s):  
Linda Douw ◽  
Martin Klein ◽  
Hans Baayen ◽  
Dimitri Velis ◽  
Jaap Reijneveld ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Ángel Romero-Martínez ◽  
Macarena González ◽  
Marisol Lila ◽  
Enrique Gracia ◽  
Luis Martí-Bonmatí ◽  
...  

Introduction: There is growing scientific interest in understanding the biological mechanisms affecting and/or underlying violent behaviors in order to develop effective treatment and prevention programs. In recent years, neuroscientific research has tried to demonstrate whether the intrinsic activity within the brain at rest in the absence of any external stimulation (resting-state functional connectivity; RSFC) could be employed as a reliable marker for several cognitive abilities and personality traits that are important in behavior regulation, particularly, proneness to violence. Aims: This review aims to highlight the association between the RSFC among specific brain structures and the predisposition to experiencing anger and/or responding to stressful and distressing situations with anger in several populations. Methods: The scientific literature was reviewed following the PRISMA quality criteria for reviews, using the following digital databases: PubMed, PsycINFO, Psicodoc, and Dialnet. Results: The identification of 181 abstracts and retrieval of 34 full texts led to the inclusion of 17 papers. The results described in our study offer a better understanding of the brain networks that might explain the tendency to experience anger. The majority of the studies highlighted that diminished RSFC between the prefrontal cortex and the amygdala might make people prone to reactive violence, but that it is also necessary to contemplate additional cortical (i.e. insula, gyrus [angular, supramarginal, temporal, fusiform, superior, and middle frontal], anterior and posterior cingulated cortex) and subcortical brain structures (i.e. hippocampus, cerebellum, ventral striatum, and nucleus centralis superior) in order to explain a phenomenon as complex as violence. Moreover, we also described the neural pathways that might underlie proactive violence and feelings of revenge, highlighting the RSFC between the OFC, ventral striatal, angular gyrus, mid-occipital cortex, and cerebellum. Conclusions. The results from this synthesis and critical analysis of RSFC findings in several populations offer guidelines for future research and for developing a more accurate model of proneness to violence, in order to create effective treatment and prevention programs.


2012 ◽  
Vol 23 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Jurriaan M. Peters ◽  
Meritxell Tomas-Fernandez ◽  
Michel J.A.M. van Putten ◽  
Tobias Loddenkemper

2014 ◽  
Vol 9 (12) ◽  
pp. 1904-1913 ◽  
Author(s):  
Silvio Ionta ◽  
Roberto Martuzzi ◽  
Roy Salomon ◽  
Olaf Blanke

1996 ◽  
Vol 6 (2) ◽  
pp. 156-164 ◽  
Author(s):  
K. J. Friston ◽  
C. D. Frith ◽  
P. Fletcher ◽  
P. F. Liddle ◽  
R. S. J. Frackowiak

2021 ◽  
Author(s):  
Geisa B. Gallardo‐Moreno ◽  
Francisco J. Alvarado‐Rodríguez ◽  
Rebeca Romo‐Vázquez ◽  
Hugo Vélez‐Pérez ◽  
Andrés A. González‐Garrido

2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2019 ◽  
Author(s):  
Milou Straathof ◽  
Michel R.T. Sinke ◽  
Theresia J.M. Roelofs ◽  
Erwin L.A. Blezer ◽  
R. Angela Sarabdjitsingh ◽  
...  

AbstractAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in many disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional connectivity and macro-scale diffusion-based structural connectivity, but no correspondence between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Locally, strong functional connectivity was found in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Distinct structure-function relationships across the brain can explain the organization of networks and may underlie variations in the impact of structural damage on functional networks and behavior.


Sign in / Sign up

Export Citation Format

Share Document