More bilateral, more anterior: Alterations of brain organization in the large-scale structural network in Chinese dyslexia

NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 63-74 ◽  
Author(s):  
Ting Qi ◽  
Bin Gu ◽  
Guosheng Ding ◽  
Gaolang Gong ◽  
Chunming Lu ◽  
...  
2019 ◽  
Vol 30 (3) ◽  
pp. 1716-1734 ◽  
Author(s):  
Ryan V Raut ◽  
Anish Mitra ◽  
Scott Marek ◽  
Mario Ortega ◽  
Abraham Z Snyder ◽  
...  

Abstract Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks—altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.


2020 ◽  
Author(s):  
Didac Vidal-Piñeiro ◽  
Markus H Sneve ◽  
Inge K Amlien ◽  
Håkon Grydeland ◽  
Athanasia M Mowinckel ◽  
...  

Abstract It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here instead, we tested using task-fMRI (n = 540, age 6–82 years) whether the functional foundations of successful episodic memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.


Author(s):  
Danyal Akarca ◽  
Petra E Vértes ◽  
Edward T Bullmore ◽  
Duncan E Astle ◽  

The emergence of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms govern the diversity of these developmental processes? There are many existing descriptive theories, but to date none are computationally formalized. We provide a mathematical framework that specifies the growth of a brain network over developmental time. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over development. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the developmental simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity of childhood brain development, capable of integrating different levels of analysis – from genes to cognition.


2020 ◽  
Author(s):  
Danyal Akarca ◽  
Petra Vertes ◽  
Edward Bullmore ◽  
The CALM team ◽  
Duncan Astle

Abstract The emergence of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms govern the diversity of these developmental processes? There are many existing descriptive theories, but to date none are computationally formalized. We provide a mathematical framework that specifies the growth of a brain network over developmental time. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over development. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the developmental simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity of childhood brain development, capable of integrating different levels of analysis – from genes to cognition.


2021 ◽  
Author(s):  
Taylor S Bolt ◽  
Jason Nomi ◽  
Danilo Bzdok ◽  
Catie Chang ◽  
B.T. Thomas Yeo ◽  
...  

The characterization of intrinsic functional brain organization has been approached from a multitude of analytic techniques and methods. We are still at a loss of a unifying conceptual framework for capturing common insights across this patchwork of empirical findings. By analyzing resting-state fMRI data from the Human Connectome Project using a large number of popular analytic techniques, we find that all results can be seamlessly reconciled by three fundamental low-frequency spatiotemporal patterns that we have identified via a novel time-varying complex pattern analysis. Overall, these three spatiotemporal patterns account for a wide variety of previously observed phenomena in the resting-state fMRI literature including the task-positive/task-negative anticorrelation, the global signal, the primary functional connectivity gradient and the network community structure of the functional connectome. The shared spatial and temporal properties of these three canonical patterns suggest that they arise from a single hemodynamic mechanism.


2020 ◽  
Vol 117 (29) ◽  
pp. 17308-17319 ◽  
Author(s):  
Evan M. Gordon ◽  
Timothy O. Laumann ◽  
Scott Marek ◽  
Ryan V. Raut ◽  
Caterina Gratton ◽  
...  

The human brain is organized into large-scale networks identifiable using resting-state functional connectivity (RSFC). These functional networks correspond with broad cognitive domains; for example, the Default-mode network (DMN) is engaged during internally oriented cognition. However, functional networks may contain hierarchical substructures corresponding with more specific cognitive functions. Here, we used individual-specific precision RSFC to test whether network substructures could be identified in 10 healthy human brains. Across all subjects and networks, individualized network subdivisions were more valid—more internally homogeneous and better matching spatial patterns of task activation—than canonical networks. These measures of validity were maximized at a hierarchical scale that contained ∼83 subnetworks across the brain. At this scale, nine DMN subnetworks exhibited topographical similarity across subjects, suggesting that this approach identifies homologous neurobiological circuits across individuals. Some DMN subnetworks matched known features of brain organization corresponding with cognitive functions. Other subnetworks represented separate streams by which DMN couples with other canonical large-scale networks, including language and control networks. Together, this work provides a detailed organizational framework for studying the DMN in individual humans.


2021 ◽  
Vol 89 (9) ◽  
pp. S181
Author(s):  
Amber Howell ◽  
Shaun Warrington ◽  
Jie Lisa Ji ◽  
Maxwell Shinn ◽  
Brendan Adkinson ◽  
...  

2020 ◽  
Vol 34 (6) ◽  
pp. 1744-1776
Author(s):  
Chenxu Wang ◽  
Yang Wang ◽  
Zhiyuan Zhao ◽  
Dong Qin ◽  
Xiapu Luo ◽  
...  

2017 ◽  
Vol 38 (9) ◽  
pp. 1642-1653 ◽  
Author(s):  
Michel RT Sinke ◽  
Willem M Otte ◽  
Maurits PA van Meer ◽  
Annette van der Toorn ◽  
Rick M Dijkhuizen

Functional outcome after stroke depends on the local site of ischemic injury and on remote effects within connected networks, frequently extending into the contralesional hemisphere. However, the pattern of large-scale contralesional network remodeling remains largely unresolved. In this study, we applied diffusion-based tractography and graph-based network analysis to measure structural connectivity in the contralesional hemisphere chronically after experimental stroke in rats. We used the minimum spanning tree method, which accounts for variations in network density, for unbiased characterization of network backbones that form the strongest connections in a network. Ultrahigh-resolution diffusion MRI scans of eight post-mortem rat brains collected 70 days after right-sided stroke were compared against scans from 10 control brains. Structural network backbones of the left (contralesional) hemisphere, derived from 42 atlas-based anatomical regions, were found to be relatively stable across stroke and control animals. However, several sensorimotor regions showed increased connection strength after stroke. Sensorimotor function correlated with specific contralesional sensorimotor network backbone measures of global integration and efficiency. Our findings point toward post-stroke adaptive reorganization of the contralesional sensorimotor network with recruitment of distinct sensorimotor regions, possibly through strengthening of connections, which may contribute to functional recovery.


2014 ◽  
Vol 26 (4) ◽  
pp. 722-745 ◽  
Author(s):  
Robert S. Blumenfeld ◽  
Daniel P. Bliss ◽  
Fernando Perez ◽  
Mark D'Esposito

Neuroanatomical tracer studies in the nonhuman primate macaque monkey are a valuable resource for cognitive neuroscience research. These data ground theories of cognitive function in anatomy, and with the emergence of graph theoretical analyses in neuroscience, there is high demand for these data to be consolidated into large-scale connection matrices (“macroconnectomes”). Because manual review of the anatomical literature is time consuming and error prone, computational solutions are needed to accomplish this task. Here we describe the “CoCoTools” open-source Python library, which automates collection and integration of macaque connectivity data for visualization and graph theory analysis. CoCoTools both interfaces with the CoCoMac database, which houses a vast amount of annotated tracer results from 100 years (1905–2005) of neuroanatomical research, and implements coordinate-free registration algorithms, which allow studies that use different parcellations of the brain to be translated into a single graph. We show that using CoCoTools to translate all of the data stored in CoCoMac produces graphs with properties consistent with what is known about global brain organization. Moreover, in addition to describing CoCoTools' processing pipeline, we provide worked examples, tutorials, links to on-line documentation, and detailed appendices to aid scientists interested in using CoCoTools to gather and analyze CoCoMac data.


Sign in / Sign up

Export Citation Format

Share Document