Protecting your gut feelings: How intestinal infections keep things moving

Neuron ◽  
2021 ◽  
Vol 109 (22) ◽  
pp. 3545-3547
Author(s):  
Lisa C. Osborne
Author(s):  
Gladkov S.F. ◽  
Perevoshchikova N.K. ◽  
Chernykh N.S. ◽  
Pichugina Yu.S. ◽  
Surkova M.A.

The current adverse situation associated with the presence of a pandemic of allergic diseases is due to the lack of a scientifically based concept of treatment and prevention. The increased interest of researchers from different countries in the formation of immunological tolerance by modeling the intestinal microbiota is of high importance. Methods of influence on the microbial communities of the child's intestine should be as delicate as possible, taking into account the individual genetic characteristics of the microecosystem and the possibility of anaphylaxis. Until now, probiotic drugs have been widely used to correct dysbiosis, but data is gradually accumulating that there is no convincing evidence base for their use for the treatment and prevention of atopy. The use of bacteriophages is very relevant and one of the promising, actively studied areas of correction of intestinal biocenosis today, which are an alternative to antibiotic and probiotic medications. Selective decontamination of representatives of opportunistic flora, as the main factor in the implementation of the atopic phenotype, makes it possible to preserve and accelerate the formation of a unique and individual composition of the intestinal microbiota of the child, which can form an immunoregulatory balance. More than a century of experience in the use of bacteriophages indicates the safety of their use. Today, bacteriophages are actively used in various fields of practical medicine − obstetrics-gynecology, perinatology, urology, pediatric otorhinolaryngology, in the treatment of purulent-septic and intestinal infections. In some cases, bacteriophages are very effective against antibiotic-resistant pathogens. The active personalized use of bacteriophages in real clinical practice will make it possible to solve a number of serious, long-standing health problems in the Russian Federation and to win a world priority in this direction.


2019 ◽  
Vol 17 (8) ◽  
pp. 109-113
Author(s):  
S. V. Khaliullina ◽  
◽  
V. A. Anokhin ◽  
Z. T. Mukhamerdieva ◽  
G. M. Kurbanova ◽  
...  

Author(s):  
Gianni Brighetti ◽  
Caterina Lucarelli ◽  
Nicoletta Marinelli

2019 ◽  
Vol 20 (14) ◽  
pp. 1181-1193 ◽  
Author(s):  
Aref Shariati ◽  
Hamid R. Aslani ◽  
Mohammad R.H. Shayesteh ◽  
Ali Taghipour ◽  
Ahmad Nasser ◽  
...  

Celiac Disease (CD) is a complex autoimmune enteropathy of the small intestine that commonly occurs in genetically predisposed individuals due to intake of gluten and related proteins. Gluten consumption, duration of breast-feeding, various infections, especially frequent intestinal infections, vaccinations and use of antibiotics can be linked to CD. It is predicted that it affects 1% of the global population and its incidence rate is increasing. Most of the people with the HLA-DQ2 or HLADQ8 are at a higher risk of developing this disease. The link between infections and autoimmune diseases has been very much considered in recent years. In several studies, we explained that pathogenic and non-pathogenic microorganisms might have multiple roles in initiation, exacerbation, and development of Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD). In various studies, the relationship between infections caused by viruses, such as Epstein-Barr Virus (EBV), Rotavirus, Hepatitis C (HCV), Hepatitis B virus (HBV), Cytomegalovirus (CMV), and Influenza virus, and parasites including Giardia spp. and Toxoplasma gondii with CD has been raised. However, increasing evidence proposes that some of these microorganisms, especially helminths, can also have protective and even therapeutic roles in the CD process. Therefore, in order to determine the role of microorganisms in the process of this disease, we attempted to summarize the evidence suggesting the role of viral and parasitic agents in pathogenesis of CD.


2016 ◽  
Vol 59 (8) ◽  
pp. 104
Author(s):  
Ken MacLeod
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaniko Shini ◽  
R. Claire Aland ◽  
Wayne L. Bryden

AbstractEpithelial damage and loss of barrier integrity occur following intestinal infections in humans and animals. Gut health was evaluated by electron microscopy in an avian model that exposed birds to subclinical necrotic enteritis (NE) and fed them a diet supplemented with the probiotic Bacillus amyloliquefaciens strain H57 (H57). Scanning electron microscopy of ileal mucosa revealed significant villus damage, including focal erosions of epithelial cells and villous atrophy, while transmission electron microscopy demonstrated severe enterocyte damage and loss of cellular integrity in NE-exposed birds. In particular, mitochondria were morphologically altered, appearing irregular in shape or swollen, and containing electron-lucent regions of matrix and damaged cristae. Apical junctional complexes between adjacent enterocytes were significantly shorter, and the adherens junction was saccular, suggesting loss of epithelial integrity in NE birds. Segmented filamentous bacteria attached to villi, which play an important role in intestinal immunity, were more numerous in birds exposed to NE. The results suggest that mitochondrial damage may be an important initiator of NE pathogenesis, while H57 maintains epithelium and improves the integrity of intestinal mucosa. Potential actions of H57 are discussed that further define the mechanisms responsible for probiotic bacteria’s role in maintaining gut health.


Sign in / Sign up

Export Citation Format

Share Document