Individual differences in the relationship between episodic detail generation and resting state functional connectivity vary with age

2021 ◽  
pp. 108138
Author(s):  
Stephanie Matijevic ◽  
Jessica R. Andrews-Hanna ◽  
Aubrey A. Wank ◽  
Lee Ryan ◽  
Matthew D. Grilli
2021 ◽  
Author(s):  
Stephanie Matijevic ◽  
Jessica R. Andrews-Hanna ◽  
Aubrey Anne Ladd Wank ◽  
Lee Ryan ◽  
Matthew D. Grilli

The ability to generate episodic details while recollecting autobiographical events is believed to depend on a collection of brain regions that form a posterior medial network (PMN). How age-related differences in episodic detail generation relate to the PMN, however, remains unclear. The present study sought to examine individual differences, and the role of age, in PMN resting state functional connectivity (rsFC) associations with episodic detail generation. Late middle-aged and older adults (N = 41, ages 52-81), and young adults (N = 21, ages 19-35) were asked to describe recent personal events, and these memory narratives were coded for episodic, semantic and ‘miscellaneous’ details. Independent components analysis and regions-of-interest analyses were used to assess rsFC within anterior PMN connections (hippocampal and medial prefrontal) and posterior PMN connections (hippocampal, parahippocampal and parieto-occipital). Compared to younger adults, older adults produced memory narratives with lower episodic specificity (ratio of episodic:total details) and a greater amount of semantic detail. Among the older adults, episodic detail amounts and episodic specificity were reduced with increasing age. There were no significant age differences in PMN rsFC. Stronger anterior PMN rsFC was related to lower episodic detail in the older adult group, but not in the young. Among the older adults, increasing age brought on an association between increased anterior PMN rsFC and reduced episodic specificity. The present study provides evidence that functional connectivity within the PMN, particularly anterior PMN, tracks individual differences in the amount of episodic details retrieved by older adults. Furthermore, these brain-behavior relationships appear to be age-specific.


2013 ◽  
Vol 51 (13) ◽  
pp. 2918-2929 ◽  
Author(s):  
Alisha L. Janssen ◽  
Aaron Boster ◽  
Beth A. Patterson ◽  
Amir Abduljalil ◽  
Ruchika Shaurya Prakash

2018 ◽  
Author(s):  
Kristina M. Deligiannidis ◽  
Christina L. Fales ◽  
Aimee R. Kroll-Desrosiers ◽  
Scott A. Shaffer ◽  
Vanessa Villamarin ◽  
...  

ABSTRACTPostpartum depression (PPD) is associated with abnormalities in resting-state functional connectivity (RSFC) but the underlying neurochemistry is unclear. We hypothesized that peripartum GABAergic neuroactive steroids (NAS) are related to cortical GABA concentrations and RSFC in PPD as compared to healthy comparison women (HCW). To test this, we measured RSFC with fMRI and GABA+/Creatine (Cr) concentrations with proton magnetic resonance spectroscopy (1H MRS) in the pregenual anterior cingulate (pgACC) and occipital cortices (OCC) and quantified peripartum plasma NAS. We examined between-group differences in RSFC and the relationship between cortical GABA+/Cr concentrations with RSFC. We investigated the relationship between NAS, RSFC and cortical GABA+/Cr concentrations. Within the default mode network (DMN) an area of the dorsomedial prefrontal cortex (DMPFC) had greater connectivity with the rest of the DMN in PPD (peak voxel: MNI coordinates (2, 58, 32), p=0.002) and was correlated to depression scores (peak HAM-D17 voxel: MNI coordinates (0, 60, 34), p=0.008). pgACC GABA+/Cr correlated positively with DMPFC RSFC in a region spanning the right anterior/posterior insula and right temporal pole (r=+0.661, p=0.000). OCC GABA+/Cr correlated positively with regions spanning both amygdalae (right amygdala: r=+0.522, p=0.000; left amygdala: r=+0.651, p=0.000) as well as superior parietal areas. Plasma allopregnanolone was higher in PPD (p=0.03) and positively correlated with intra DMPFC connectivity (r=+0.548, p=0.000) but not GABA+/Cr. These results provide initial evidence that PPD is associated with altered DMN connectivity; cortical GABA+/Cr concentrations are associated with postpartum RSFC and allopregnanolone is associated with postpartum intra-DMPFC connectivity.


2021 ◽  
Author(s):  
Austin L Boroshok ◽  
Anne T Park ◽  
Panagiotis Fotiadis ◽  
Gerardo H Velasquez ◽  
Ursula A Tooley ◽  
...  

Neuroplasticity, defined as the brain's ability to change in response to its environment, has been extensively studied at the cellular and molecular levels. Work in animal models suggests that stimulation to the ventral tegmental area (VTA) enhances plasticity, and that myelination constrains plasticity. Little is known, however, about whether proxy measures of these properties in the human brain are associated with learning. Here we investigated the plasticity of the frontoparietal system (FPS), which supports complex cognition. We asked whether VTA resting-state functional connectivity and myelin map (T1-w/T2-w ratio) values predicted learning after short-term training on a FPS-dependent task: the adaptive n-back (n = 46, ages 18-25). We found that stronger connectivity between VTA and lateral prefrontal cortex at baseline predicted greater improvements in accuracy. Lower myelin map values predicted improvement in response times, but not accuracy. Our findings suggest that proxy markers of neural plasticity can predict learning in humans.


2018 ◽  
Author(s):  
◽  
Anne M. Merrill

Mood disorders, anxiety disorders and borderline personality disorder overlap in symptom criteria, are highly comorbid with one another, and group together in factor models of psychopathology (Kotov et al., 2011). These disorders of emotional distress are characterized by increased frequency and duration of intense negative affect, large abrupt shifts in affect (i.e., affective instability), and behavioral dysregulation (Selby, Anestis, Bender, and Joiner, 2009). Functional connectivity between the amygdala and the ventromedial prefrontal cortex (vmPFC) has been proposed as a possible endophenotype for emotion dysregulation. However, the relationship between amygdala-vmPFC connectivity and transdiagnostic symptoms of emotional distress is largely unknown. The present study used two powerful methodologies, fMRI and Ecological Momentary Assessment, to examine the relationship between amygdala-vmPFC resting state functional connectivity (rs-FC) and dysregulated moods and behaviors in daily lives. Twenty-seven women in treatment for a disorder of emotional distress completed clinical interviews, self-report questionnaires on symptoms and emotion regulation, resting state scans, and two weeks of frequent surveys assessing moods and behaviors. Results found that amygdala-vmPFC rs-FC was (a) correlated with frequency of behavioral dysregulation, including drinking alcohol to cope with distress, binge eating, and impulsivity, and (b) differentially correlated with anxiety and depression, replicating the results of previous research (Burghy et al., 2012). Results also found that another emotion circuit, the dACC-amygdala, was associated with negative affect and affective instability. The current research found evidence for neural mechanisms related to emotional and behavioral dysregulation in daily lives of women with transdiagnostic disorders of emotional distress.


2018 ◽  
Author(s):  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Megan Cooke ◽  
M. Justin Kim ◽  
Tracy R. Melzer ◽  
...  

AbstractIntrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations, many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Connectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data alone. Furthermore, at equivalent scan lengths, GFC displays higher heritability on average than resting-state functional connectivity. We also show that predictions of cognitive ability from GFC generalize across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic connectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.


Sign in / Sign up

Export Citation Format

Share Document