Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex

Neuroscience ◽  
2004 ◽  
Vol 126 (2) ◽  
pp. 503-509 ◽  
Author(s):  
J Nacher ◽  
K Pham ◽  
V Gil-Fernandez ◽  
B.S McEwen
2017 ◽  
Vol 33 (2) ◽  
pp. 421-431 ◽  
Author(s):  
Gwladys Temkou Ngoupaye ◽  
Francis Bray Yassi ◽  
Doriane Amanda Nguepi Bahane ◽  
Elisabeth Ngo Bum

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep K. Shukla ◽  
Avtar S. Meena ◽  
Kesha Dalal ◽  
Cherie Canelas ◽  
Geetha Samak ◽  
...  

AbstractAlcohol use disorders are associated with altered stress responses, but the impact of stress or stress hormones on alcohol-associated tissue injury remain unknown. We evaluated the effects of chronic restraint stress on alcohol-induced gut barrier dysfunction and liver damage in mice. To determine whether corticosterone is the stress hormone associated with the stress-induced effects, we evaluated the effect of chronic corticosterone treatment on alcoholic tissue injury at the Gut-Liver-Brain (GLB) axis. Chronic restraint stress synergized alcohol-induced epithelial tight junction disruption and mucosal barrier dysfunction in the mouse intestine. These effects of stress on the gut were reproduced by corticosterone treatment. Corticosterone synergized alcohol-induced expression of inflammatory cytokines and chemokines in the colonic mucosa, and it potentiated the alcohol-induced endotoxemia and systemic inflammation. Corticosterone also potentiated alcohol-induced liver damage and neuroinflammation. Metagenomic analyses of 16S RNA from fecal samples indicated that corticosterone modulates alcohol-induced changes in the diversity and abundance of gut microbiota. In Caco-2 cell monolayers, corticosterone dose-dependently potentiated ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. These data indicate that chronic stress and corticosterone exacerbate alcohol-induced mucosal barrier dysfunction, endotoxemia, and systemic alcohol responses. Corticosterone-mediated promotion of alcohol-induced intestinal epithelial barrier dysfunction and modulation of gut microbiota may play a crucial role in the mechanism of stress-induced promotion of alcohol-associated tissue injury at the GLB axis.


2021 ◽  
Vol 12 (1) ◽  
pp. 154-163
Author(s):  
Jie Wu ◽  
Cui Liu ◽  
Ling Zhang ◽  
Bing He ◽  
Wei-Ping Shi ◽  
...  

Abstract Background To investigate the effects of chronic restraint stress on cognition and the probable molecular mechanism in mice. Methods In the current work, a restraining tube was used as a way to induce chronic stress in mice. The protein levels were determined with ELISA and western blot. A series of behavior tests, including the Morris water maze, elevated plus maze, open field test, and novel object recognition test, were also performed to examine the anxiety and the ability of learning and memory. Moreover, murine neuroblastoma N2a cells were used to confirm the findings from mice under chronic stress. Results Decreased synaptic functions were impaired in chronic stress with the downregulation of PSD95, GluR-1, the neurotrophic factor BDNF, and immediate-onset genes Arc and Egr. Chronic restraint decreased the histone acetylation level in hippocampal neurons while HDAC2 was increased and was co-localized with glucocorticoid receptors. Moreover, chronic stress inhibited the PI3K/AKT signaling pathway and induced energy metabolism dysfunctions. Conclusion This work examining the elevated levels of HDAC2 in the hippocampus may provide new insights and targets for drug development for treating many neurodegenerative diseases.


2020 ◽  
Vol 18 (11) ◽  
pp. 872-880
Author(s):  
Ying-Li ZHU ◽  
Lin-Yuan WANG ◽  
Dan-Ping ZHAO ◽  
Cheng-Long WANG ◽  
Rui ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document