scholarly journals Negative adsorption in the isotherm adsorption experiments of low-adsorption coal and shale

2019 ◽  
Vol 6 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Wenguang Tian ◽  
Ze Deng ◽  
Hongyan Wang ◽  
Honglin Liu ◽  
Guizhong Li ◽  
...  
2009 ◽  
Vol 36 (5) ◽  
pp. 881-888 ◽  
Author(s):  
Elsadig A.M. Abdallah ◽  
Graham A. Gagnon

The goal of this research was to remove arsenic from groundwater supplies via adsorption into media obtained from waste material generated as by-products from glass recycling programs and the seafood industry such as crushed glass and scallop shells. During the course of this research four new adsorbents were developed: ferric hydroxide coated crushed glass (FHCCG); ferric oxide coated crushed glass (FOCCG); ferric hydroxide coated scallop shells (FHCSS); and ferric oxide coated scallop shells (FOCSS). The adsorbents were characterized through evaluation of their structure, surface area, chemical composition, iron content, and coating stability. Efficiency of the adsorbents to remove arsenic from water was examined through batch kinetic and isotherm adsorption experiments. The adsorption capacity of the adsorbents was also evaluated by performing column experiments using real ground waters and a synthetic water. Arsenic removal to a concentration less than 10 μg/L was achieved with the FHCSS and more than 9000 bed volumes of water were treated before the breakthrough point was reached. The research results revealed that scallop shells coated with ferric hydroxideperformed better than crushed glass coated with ferric hydroxide. Both FOCCG and FOCSS had poor arsenic removal compared with FHCSS and granular ferric hydroxide (GFH). Ferric hydroxide coated scallop shells performed similarly to GFH.


1911 ◽  
Vol 8 (4) ◽  
pp. 209-210 ◽  
Author(s):  
R. O. Herzog
Keyword(s):  

2018 ◽  
Vol 16 (3) ◽  
pp. 329 ◽  
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno Sutarno

Salicylic acid-modified magnetite (Mag-SA) and gallic acid-modified magnetite (Mag-GA) particles were prepared by co-precipitation procedure. Characterization results showed the interaction that occurs between the surface of magnetite with salicylic acid (Mag-SA) and gallic acid (Mag-GA) was through hydrogen bonding. Adsorption of [AuCl4]– onto Mag-SA and Mag-GA surfaces as a function of initial pH, contact time, and initial concentration of the [AuCl4]– solution were comparatively investigated. Result showed that the optimum adsorption of [AuCl4]– onto Mag-SA or Mag-GA was found at pH 3. The adsorption process were found to allow the pseudo-second order equation, both for Mag-SA and Mag-GA. The parameters in isotherm adsorption equations conformed to the Langmuir and Freundlich isotherms very well for Mag-GA, but for Mag-SA, only conformed to the Langmuir isotherm very well. The result of this study demonstrate that the ability Mag-GA to adsorb [AuCl4]– higher than Mag-SA.


2021 ◽  
Vol 406 ◽  
pp. 265-273
Author(s):  
Hakima Hachelef ◽  
Abdallah Khelifa ◽  
Abderrahim Benmoussat

The behaviour of a corrosion inhibitor based on proplolis extract via an iron alloy immersed in an electrolyte containing ethylene glycol water in NaCl 0.1 M was evaluated by a stationary technique not destructive which is the technique of electrochemical impedance. The diameter of the Nyquist curves increases with the increase of the concentration of propolis extract and it reaches an optimum concentration at 1.25 g / L, the maximum surface coverage percent at this concentration is 71.98% .The activation parameters reveal that the inhibitor molecules on iron surface are absorbed by physisorption and a chimisorption and obey Langmuir isotherm adsorption. These results were supplemented by Scanning electron microscopy (SEM) and (EDX) spectrum of chemical composition. The metal solution interface is simulated as a physical model by using electrochemical impedance spectroscopy (EIS). Keywords: Iron Alloy, Propolis extract, ethylene glycol;, Lamgmuir isotherm, Electrochemical impedance Spectroscopy (EIS).


2019 ◽  
Vol 948 ◽  
pp. 221-227
Author(s):  
Latifah Hauli ◽  
Karna Wijaya ◽  
Ria Armunanto

Catalyst of Chromium (Cr) metal supported on sulfated zirconia (SZ) was prepared by wet impregnation method. This study aim to determine the optimal concentration of Cr metal that impregnated on SZ catalyst. Preparation of catalyst was conducted at different concentrations of Cr metal (0.5%, 1%, 1.5% (w/w)), impregnated on SZ catalyst, then followed by the calcinationand reduction process. Catalysts were charaterized by FTIR, XRD, XRF, SAA, TEM, and acidity test. The results showed the Cr/SZ 1% had the highest acidity value of 8.22 mmol/g which confirmed from FTIR spectra. All the crystal phase of these catalysts were in monoclinic. The specific surface area increased with the increasing of Cr metal concentration on SZ catalyst and the isotherm adsorption-desorption of N2 gas observed all the catalysts as mesoporous material. The impregnation process formed particles agglomeration.


Nature ◽  
1947 ◽  
Vol 160 (4064) ◽  
pp. 408-410 ◽  
Author(s):  
R. KENWORTHY SCHOFIELD

Author(s):  
T. L. Kurth ◽  
S. C. Cermak ◽  
J. A. Byars ◽  
G. Biresaw

The frictional behaviors of a variety of fatty esters (methyl palmitate (MP), methyl laurate (ML), and 2-ethylhexyl oleate (EHO)) and oleic estolide esters (methyl oleic estolide ester (ME) and 2-ethylhexyl oleic estolide ester (EHE)) as additives in hexadecane have been examined in a boundary lubrication test regime using steel contacts. Critical additive concentrations were defined and used to perform novel and simple Langmuir analyses that provide an order of adsorption energies: EHE ≥ ME > EHO > MP > ML. Application of a general adsorption model indicates slight cooperative adsorption of EHE, ME, and EHO. MP and ML data require larger attractive interaction terms (α ≤ −2.3) to be adequately fit. Irrespective of ester functionality increasingly negative adsorption energies appear to correlate with molecular weight. This suggests that multiple site coverage and multiple adsorptive interactions are likely for each of the esters studied.


2020 ◽  
Vol 11 ◽  
pp. 100468
Author(s):  
Najat Qisse ◽  
Marouane EL Alouani ◽  
Laila EL Azzouzi ◽  
Imane EL Fadil ◽  
Hamid Saufi ◽  
...  

2019 ◽  
Vol 22 (6) ◽  
pp. 242-249 ◽  
Author(s):  
Yati B. Yuliyati ◽  
Solihudin Solihudin ◽  
Atiek Rostika Noviyanti

Reactive groups such as silanol, hydroxyl, and carbonyl groups in silica-lignin composites play a role in binding to chromium(VI) ions. The activation of functional groups in silica-lignin can be increased by the addition of an activator such as sodium periodate, which can also oxidize the lignin monomer (guaiasil) to ortho-quinone. This study aimed to obtain silica-lignin composites from rice husks activated by sodium periodate with a high surface area. Composite absorption was tested on chromium(VI) adsorption. Silica-lignin isolation was carried out by using the sol-gel method at concentrations of sodium hydroxide 5, 10, 15, and 20% (b/b). Silica-lignin activated with sodium periodate 10% (b/b) had the smallest particle size of about 8μm, with a surface area of 14.0888 m2.g-1 and followed Halsey isotherm adsorption model, with an adsorption capacity of 0.3054 mg.g-1.


Sign in / Sign up

Export Citation Format

Share Document