Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

Author(s):  
P.H. Lu ◽  
P. Gomolchuk ◽  
H. Chen ◽  
D. Beitz ◽  
A.W. Grosser
1995 ◽  
Vol 42 (4) ◽  
pp. 575-579 ◽  
Author(s):  
G. Baldazzi ◽  
M. Rossi ◽  
E. Querzola ◽  
G. Guidi ◽  
P. Chirco ◽  
...  

2021 ◽  
pp. 1290-1314
Author(s):  
Lotte Clinckemalie ◽  
Donato Valli ◽  
Maarten B. J. Roeffaers ◽  
Johan Hofkens ◽  
Bapi Pradhan ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Mikhail K. Khodzitsky ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Anton D. Zaitsev ◽  
Elena S. Makarova ◽  
...  

The terahertz frequency range is promising for solving various practically important problems. However, for the terahertz technology development, there is still a problem with the lack of affordable and effective terahertz devices. One of the main tasks is to search for new materials with high sensitivity to terahertz radiation at room temperature. Bi1−xSbx thin films with various Sb concentrations seem to be suitable for such conditions. In this paper, the terahertz radiation influence onto the properties of thermoelectric Bi1−xSbx 200 nm films was investigated for the first time. The films were obtained by means of thermal evaporation in vacuum. They were affected by terahertz radiation at the frequency of 0.14 terahertz (THz) in the presence of thermal gradient, electric field or without these influences. The temporal dependencies of photoconductivity, temperature difference and voltage drop were measured. The obtained data demonstrate the possibility for practical use of Bi1−xSbx thin films for THz radiation detection. The results of our work promote the usage of these thermoelectric materials, as well as THz radiation detectors based on them, in various areas of modern THz photonics.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3260
Author(s):  
Kjell A. L. Koch-Mehrin ◽  
Sarah L. Bugby ◽  
John E. Lees ◽  
Matthew C. Veale ◽  
Matthew D. Wilson

Cadmium zinc telluride (CdZnTe) detectors are known to suffer from polarization effects under high photon flux due to poor hole transport in the crystal material. This has led to the development of a high-flux capable CdZnTe material (HF-CdZnTe). Detectors with the HF-CdZnTe material have shown promising results at mitigating the onset of the polarization phenomenon, likely linked to improved crystal quality and hole carrier transport. Better hole transport will have an impact on charge collection, particularly in pixelated detector designs and thick sensors (>1 mm). In this paper, the presence of charge sharing and the magnitude of charge loss were calculated for a 2 mm thick pixelated HF-CdZnTe detector with 250 μm pixel pitch and 25 μm pixel gaps, bonded to the STFC HEXITEC ASIC. Results are compared with a CdTe detector as a reference point and supported with simulations from a Monte-Carlo detector model. Charge sharing events showed minimal charge loss in the HF-CdZnTe, resulting in a spectral resolution of 1.63 ± 0.08 keV Full Width at Half Maximum (FWHM) for bipixel charge sharing events at 59.5 keV. Depth of interaction effects were shown to influence charge loss in shared events. The performance is discussed in relation to the improved hole transport of HF-CdZnTe and comparison with simulated results provided evidence of a uniform electric field.


2016 ◽  
Vol 111 (6) ◽  
pp. 542-558 ◽  
Author(s):  
Robert Anigstein ◽  
Richard H. Olsher ◽  
Donald A. Loomis ◽  
Armin Ansari

2021 ◽  
pp. 2104879
Author(s):  
Carmelita Rodà ◽  
Mauro Fasoli ◽  
Matteo L. Zaffalon ◽  
Francesca Cova ◽  
Valerio Pinchetti ◽  
...  

Author(s):  
R.T. Kouzes ◽  
K.E. Conlin ◽  
W.J. Kernan ◽  
E.K. Mace ◽  
E.R. Siciliano ◽  
...  

2021 ◽  
Author(s):  
Tiebin Yang ◽  
Feng Li ◽  
Rongkun Zheng

Perovskite halides hold great potential for high-energy radiation detection. Recent advancements in detecting alpha-, beta-, X-, and gamma-rays by perovskite halides are reviewed and an outlook on the device performance optimization is provided.


Sign in / Sign up

Export Citation Format

Share Document