Nitric oxide synthase-dependent “On/Off” switch and apoptosis in freshwater and aestivating lungfish, Protopterus annectens: Skeletal muscle versus cardiac muscle

Nitric Oxide ◽  
2013 ◽  
Vol 32 ◽  
pp. 1-12 ◽  
Author(s):  
D. Amelio ◽  
F. Garofalo ◽  
W.P. Wong ◽  
S.F. Chew ◽  
Y.K. Ip ◽  
...  
Diabetes ◽  
1997 ◽  
Vol 46 (11) ◽  
pp. 1691-1700 ◽  
Author(s):  
S. Kapur ◽  
S. Bedard ◽  
B. Marcotte ◽  
C. H. Cote ◽  
A. Marette

2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


2012 ◽  
Author(s):  
Karla Punkt ◽  
Katharina Kandt ◽  
Andreas Oberbach ◽  
Volker Adams ◽  
Igor Buchwalow ◽  
...  

1997 ◽  
Vol 93 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Baimeng Zhang ◽  
Kenneth R. Knight ◽  
Bruce Dowsing ◽  
Elizabeth Guida ◽  
Long H. Phan ◽  
...  

1. The effects of the nitric oxide synthase (NOS) inhibitors, NG-nitro-l-arginine-methyl ester (l-NAME), nitroiminoethyl-l-ornithine and S-methylisothiourea on skeletal muscle survival following 2 h of tourniquet ischaemia and 24 h of reperfusion were compared with those of the antiinflammatory steroid, dexamethasone. 2. Administration of each of the NOS inhibitors or dexamethasone 30 min before reperfusion reduced the degree of skeletal muscle necrosis 24 h after reperfusion. 3. The influence of timing of drug administration was investigated. l-NAME administered 30 min before reperfusion, at 3 h after reperfusion, but not thereafter, significantly improved muscle survival compared with saline-treated controls. Dexamethasone administered 30 min before, or at 3 or 8 h after reperfusion, but not at 16 h, significantly improved muscle survival, but neither agent had protective effects when administered before ischaemia. 4. After 8 h of reperfusion of ischaemic skeletal muscle, cell-free homogenates contained Ca2+-independent (inducible) NOS activity which was reduced in dexamethasone-treated (2.5 mg/kg) rats. Furthermore, inducible NOS mRNA levels, as detected by reverse transcriptase-PCR, were increased after 8 h of reperfusion in saline, but not in dexamethasone-treated rats. 5. These data suggest a significant deleterious effect of endogenous NO which may be restricted to the first 3 h of the reperfusion phase of ischaemia-reperfusion injury, and raise the possibility of effective treatment of incipient reperfusion injury, even after several hours of reperfusion.


1997 ◽  
Vol 272 (1) ◽  
pp. C35-C40 ◽  
Author(s):  
S. Okuda ◽  
F. Kanda ◽  
Y. Kawahara ◽  
K. Chihara

Cytokine-stimulated expression of inducible type of nitric oxide synthase (iNOS) seems to be regulated by various signal pathways in a cell-specific manner. In this study, we examined how it was regulated in L6 rat skeletal muscle cells. In L6 cells, the combination of interleukin-1 beta and interferon-gamma induced a marked accumulation of nitrite, a stable metabolite of nitric oxide. In parallel with this reaction, iNOS mRNA expression was achieved at a maximum between 3 and 6 h, and iNOS protein was detectable at 6 h and peaked at 24 h after stimulation. Tyrosine kinase inhibitors, herbimycin A, and genistein suppressed cytokine-induced iNOS expression and nitrite production. Forskolin, an adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) activator, and phorbol 12-myristate 13-acetate, a protein kinase C (PKC)-activating phorbol ester, enhanced these cytokine-induced reactions. These results indicate that iNOS expression by cytokines is mediated via a protein tyrosine kinase-dependent pathway and is positively modulated by both PKA- and PKC-dependent pathways in this cell type.


2013 ◽  
Vol 115 (4) ◽  
pp. 389-393 ◽  
Author(s):  
Karla Punkt ◽  
Katharina Kandt ◽  
Andreas Oberbach ◽  
Volker Adams ◽  
Igor Buchwalow ◽  
...  

2008 ◽  
Vol 295 (4) ◽  
pp. H1522-H1528 ◽  
Author(s):  
Adam G. Goodwill ◽  
Milinda E. James ◽  
Jefferson C. Frisbee

This study determined if altered vascular prostacyclin (PGI2) and/or thromboxane A2 (TxA2) production with reduced Po2 contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po2 under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po2. Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI2 production with reduced Po2 was similar between strains, although TxA2 production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH2/TxA2 receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA2, which competes against the vasodilator influences of PGI2. These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA2 production and may blunt vascular sensitivity to PGI2.


Sign in / Sign up

Export Citation Format

Share Document