Global phase portraits of planar piecewise linear refracting systems of saddle–saddle type

2021 ◽  
Vol 62 ◽  
pp. 103381
Author(s):  
Yi Shao ◽  
Shimin Li ◽  
Kuilin Wu
2011 ◽  
Vol 21 (03) ◽  
pp. 725-735 ◽  
Author(s):  
K. SRINIVASAN ◽  
I. RAJA MOHAMED ◽  
K. MURALI ◽  
M. LAKSHMANAN ◽  
SUDESHNA SINHA

A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.


Author(s):  
Akira Saito ◽  
Junta Umemoto ◽  
Kohei Noguchi ◽  
Meng-Hsuan Tien ◽  
Kiran D’Souza

Abstract In this paper, an experimental forced response analysis for a two degree of freedom piecewise-linear oscillator is discussed. First, a mathematical model of the piecewise linear oscillator is presented. Second, the experimental setup developed for the forced response study is presented. The experimental setup is capable of investigating a two degree of freedom piecewise linear oscillator model. The piecewise linearity is achieved by attaching mechanical stops between two masses that move along common shafts. Forced response tests have been conducted, and the results are presented. Discussion of characteristics of the oscillators are provided based on frequency response, spectrogram, time histories, phase portraits, and Poincaré sections. Period doubling bifurcation has been observed when the excitation frequency changes from a frequency with multiple contacts between the masses to a frequency with single contact between the masses occurs.


2015 ◽  
Vol 25 (04) ◽  
pp. 1550052 ◽  
Author(s):  
J. Kengne

In this paper, the dynamics of the paradigmatic hyperchaotic oscillator with gyrators introduced by Tamasevicius and co-workers (referred to as the TCMNL oscillator hereafter) is considered. This well known hyperchaotic oscillator with active RC realization of inductors is suitable for integrated circuit implementation. Unlike previous literature based on piecewise-linear approximation methods, I derive a new (smooth) mathematical model based on the Shockley diode equation to explore the dynamics of the oscillator. Various tools for detecting chaos including bifurcation diagrams, Lyapunov exponents, frequency spectra, phase portraits and Poincaré sections are exploited to establish the connection between the system parameters and various complex dynamic regimes (e.g. hyperchaos, period-3 doubling bifurcation, coexistence of attractors, transient chaos) of the hyperchaotic oscillator. One of the most interesting and striking features of this oscillator discovered/revealed in this work is the coexistence of a hyperchaotic attractor with a chaotic one over a broad range of system parameters. This phenomenon was not reported previously and therefore represents a meaningful contribution to the understanding of the behavior of nonlinear dynamical systems in general. A close agreement is observed between theoretical and experimental analyses.


2019 ◽  
Vol 29 (07) ◽  
pp. 1930017
Author(s):  
Viktor Avrutin ◽  
Zhanybai T. Zhusubaliyev

The paper describes how several coexisting stable closed invariant curves embedded into each other can arise in a two-dimensional piecewise-linear normal form map. Phenomena of this type have been recently reported for a piecewise smooth map, modeling the behavior of a power electronic DC–DC converter. In the present work, we demonstrate that this type of multistability exists in a more general class of models and show how it may result from the well-known period adding bifurcation structure due to its deformation so that the phase-locking regions start to overlap. We explain how this overlapping structure is related to the appearance of coexisting stable closed invariant curves nested into each other. By means of detailed, numerically calculated phase portraits we hereafter present an example of this type of multistability. We also demonstrate that the basins of attraction of the nested stable invariant curves may be separated from each other not only by repelling closed invariant curves, as previously reported, but also by a chaotic saddle. It is suggested that the considered kind of multistability is a generic phenomenon in piecewise smooth dynamical systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han

This paper concerns limit cycle bifurcations by perturbing a piecewise linear Hamiltonian system. We first obtain all phase portraits of the unperturbed system having at least one family of periodic orbits. By using the first-order Melnikov function of the piecewise near-Hamiltonian system, we investigate the maximal number of limit cycles that bifurcate from a global center up to first order ofε.


2014 ◽  
Vol 24 (06) ◽  
pp. 1430018 ◽  
Author(s):  
David J. W. Simpson

The border-collision normal form is a piecewise-linear continuous map on ℝN that describes the dynamics near border-collision bifurcations of nonsmooth maps. This paper studies a codimension-three scenario at which the border-collision normal form with N = 2 exhibits infinitely many attracting periodic solutions. In this scenario there is a saddle-type periodic solution with branches of stable and unstable manifolds that are coincident, and an infinite sequence of attracting periodic solutions that converges to an orbit homoclinic to the saddle-type solution. Several important features of the scenario are shown to be universal, and three examples are given. For one of these examples, infinite coexistence is proved directly by explicitly computing periodic solutions in the infinite sequence.


Sign in / Sign up

Export Citation Format

Share Document