Effect of jet diameter on the maximum surface heat flux during quenching of hot surface

2013 ◽  
Vol 265 ◽  
pp. 727-736 ◽  
Author(s):  
Chitranjan Agrawal ◽  
Ravi Kumar ◽  
Akhilesh Gupta ◽  
Barun Chatterjee
2015 ◽  
Vol 22 (3) ◽  
pp. 199-219 ◽  
Author(s):  
C. Agarwal ◽  
Ravi Kumar ◽  
Akhilesh Gupta ◽  
Barun Chatterjee

1995 ◽  
Vol 117 (3) ◽  
pp. 693-697 ◽  
Author(s):  
J. C. Chen ◽  
K. K. Hsu

Several boiling regimes are characterized by intermittent contacts of vapor and liquid at the superheated wall surface. A microthermocouple probe was developed capable of detecting transient surface temperatures with a response time better than 1 ms. The transient temperature data were utilized to determine the time-varying heat flux under liquid contacts. The instantaneous surface heat flux was found to vary by orders of magnitude during the milliseconds of liquid residence at the hot surface. The average heat flux during liquid contact was found to range from 105 to 107 W/m2 for water at atmospheric pressure, as wall superheat was varied from 50 to 450°C.


2003 ◽  
Vol 125 (2) ◽  
pp. 333-338 ◽  
Author(s):  
Qiang Cui ◽  
Sanjeev Chandra ◽  
Susan McCahan

The effect of adding one of three salts (NaCl, Na2SO4 or MgSO4) to water sprayed on a hot surface was studied experimentally. A copper test surface was heated to 240°C and quenched with a water spray. The variation of surface temperature during cooling was recorded, and the surface heat flux calculated from these measurements. Surface heat flux during cooling with pure water sprays was compared with that obtained using salt solutions. Dissolved NaCl or Na2SO4 increased nucleate boiling heat transfer, but had little effect on transition boiling during spray cooling. MgSO4 increased both nucleate and transition boiling heat flux. Enhanced nucleate boiling was attributed to foaming in the liquid film generated by the dissolved salts. MgSO4 produced the largest increase in nucleate boiling heat transfer, Na2SO4 somewhat less and NaCl the least. A concentration of 0.2 mol/l of MgSO4 produced the greatest heat flux enhancement; higher salt concentrations did not result in further improvements. During transition boiling particles of MgSO4 adhered to the heated surface, raising surface roughness and increasing heat transfer. Addition of MgSO4 reduced the time required to cool a hot surface from 240°C to 120°C by an order of magnitude.


2018 ◽  
Vol 89 (9) ◽  
pp. 1800113 ◽  
Author(s):  
Chitranjan Agrawal ◽  
Ravi Kumar ◽  
Akhilesh Gupta ◽  
Barun Chatterjee

2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


Sign in / Sign up

Export Citation Format

Share Document