High Speed Observation and Measurement of Surface Temperature and Surface Heat Flux During Impact of a Droplet on Hot Surface

Author(s):  
SUHAIMI ILLIAS ◽  
Mohammad Nasim HASAN ◽  
Yuichi Mitsutake ◽  
Masanori Monde
2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Arnab Dasgupta ◽  
A. S. Chinchole ◽  
P. P. Kulkarni ◽  
D. K. Chandraker ◽  
A. K. Nayak

The physical phenomena of rewetting and quenching are of prime importance in nuclear reactor safety in the event of a loss of coolant accident (LOCA). Generally, top spray or bottom flooding concepts are used in reactors. Numerical simulation of these processes entails the use of the concept of a rewetting velocity. However, heat transfer just before and after the rewetting front is often assumed in an ad hoc fashion. The present work aims to evaluate the surface heat flux during quenching as a function of surface temperature. The experiments presented herein are primarily applicable to the bottom flooding scenario with high flooding rate. In the experiments, a rod heated above Leidenfrost point is immersed in a pool of water. The surface temperature was recorded using a surface-mounted thermocouple. The surface heat flux was then determined numerically and hence can be related to a particular value of surface temperature. This type of data is useful for numerical simulations of quenching phenomena. In addition to this, high-speed photography was undertaken to visualize the phenomena taking place during the rewetting and quenching. Both subcooled and saturated water pools have been used and compared in the experiments. Surface finish was seen to influence rewetting process by a mechanism which here is termed as “transition boiling enhanced film boiling.” The effect of using nanofluids was also studied. No marked change is observed in the overall quenching time with nanofluids, however, the initial cooling is apparently faster.


1976 ◽  
Vol 98 (2) ◽  
pp. 208-212 ◽  
Author(s):  
G. M. Harpole ◽  
I. Catton

The laminar boundary layer equations for free convection over bodies of arbitrary shape (i.e., a three-term series expansion) and with arbitrary surface heat flux or surface temperature are solved in local Cartesian coordinates. Both two-dimensional bodies (e.g., horizontal cylinders) and axisymmetric bodies (e.g., spheres) with finite radii of curvature at their stagnation points are considered. A Blasius series expansion is applied to convert from partial to ordinary differential equations. An additional transformation removes the surface shape dependence and the surface heat flux or surface temperature dependence of the equations. A second-order-correct, finite-difference method is used to solve the resulting equations. Tables of results for low Prandtl numbers are presented, from which local Nusselt numbers can be computed.


2006 ◽  
Vol 19 (12) ◽  
pp. 2953-2968 ◽  
Author(s):  
Takashi Mochizuki ◽  
Hideji Kida

Abstract The seasonality of the decadal sea surface temperature (SST) anomalies and the related physical processes in the northwestern Pacific were investigated using a three-dimensional bulk mixed layer model. In the Kuroshio–Oyashio Extension (KOE) region, the strongest decadal SST anomaly was observed during December–February, while that of the central North Pacific occurred during February–April. From an examination of the seasonal heat budget of the ocean mixed layer, it was revealed that the seasonal-scale enhancement of the decadal SST anomaly in the KOE region was controlled by horizontal Ekman temperature transport in early winter and by vertical entrainment in autumn. The temperature transport by the geostrophic current made only a slight contribution to the seasonal variation of the decadal SST anomaly, despite controlling the upper-ocean thermal conditions on decadal time scales through the slow Rossby wave adjustment to the wind stress curl. When averaging over the entire KOE region, the contribution from the net sea surface heat flux was also no longer significantly detected. By examining the horizontal distributions of the local thermal damping rate, however, it was concluded that the wintertime decadal SST anomaly in the eastern KOE region was rather damped by the net sea surface heat flux. It was due to the fact that the anomalous local thermal damping of the SST anomaly resulting from the vertical entrainment in autumn was considerably strong enough to suppress the anomalous local atmospheric thermal forcing that acted to enhance the decadal SST anomaly.


Author(s):  
Terry Hendricks ◽  
Jaal Ghandhi ◽  
John Brossman

Heat flux measurements were performed in an air-cooled utility engine using a fast-response coaxial-type surface thermocouple. The surface heat flux was calculated using both analytical and numerical models. The heat flux was found to be a strong function of engine load. The peak heat flux and initial heat flux rise rate increase with engine load. The measured heat flux data were used to estimate a global heat transfer rate, and this was compared with the heat transfer rate calculated by a single-zone heat release analysis. The measured values of heat transfer were higher than the calculated values largely because of the lack of spatial averaging. The high load data showed an unexplainable negative heat flux during the expansion stroke while the gas temperature was still high. A 1D and 2D finite difference numerical model utilizing an adaptive timestep Crank-Nicholson (CN) integration routine was developed to investigate the surface temperature measurement. Applying the measured surface temperature profile to the 1D model, the resultant surface heat flux showed excellent agreement with the analytical inversion solution and captured the reversal of the energy flow back into the cylinder during the expansion stroke. The 2D numerical model was developed to observe transient lateral conduction effects within the probe and incorporated the various materials used in the construction and assembly of the heat flux sensor. The resulting average heat flux profile for the test case is shown to be slightly higher in peak and longer in duration when compared with the results from the 1D analytical inversion, and this is attributed to contributions from the high thermal diffusivity constituents in the sensor. Furthermore, the negative heat flux at high load was not eliminated suggesting that factors other than lateral conduction may be affecting the measurement accuracy.


1995 ◽  
Vol 117 (3) ◽  
pp. 693-697 ◽  
Author(s):  
J. C. Chen ◽  
K. K. Hsu

Several boiling regimes are characterized by intermittent contacts of vapor and liquid at the superheated wall surface. A microthermocouple probe was developed capable of detecting transient surface temperatures with a response time better than 1 ms. The transient temperature data were utilized to determine the time-varying heat flux under liquid contacts. The instantaneous surface heat flux was found to vary by orders of magnitude during the milliseconds of liquid residence at the hot surface. The average heat flux during liquid contact was found to range from 105 to 107 W/m2 for water at atmospheric pressure, as wall superheat was varied from 50 to 450°C.


2009 ◽  
Vol 66 (2) ◽  
pp. 412-431 ◽  
Author(s):  
Rob Stoll ◽  
Fernando Porté-Agel

Abstract Large-eddy simulation, with recently developed dynamic subgrid-scale models, is used to study the effect of heterogeneous surface temperature distributions on regional-scale turbulent fluxes in the stable boundary layer (SBL). Simulations are performed of a continuously turbulent SBL with surface heterogeneity added in the form of streamwise transitions in surface temperature. Temperature differences between patches of 6 and 3 K are explored with patch length scales ranging from one-half to twice the equivalent homogeneous boundary layer height. The surface temperature heterogeneity has important effects on the mean wind speed and potential temperature profiles as well as on the surface heat flux distribution. Increasing the difference between the patch temperatures results in decreased magnitude of the average surface heat flux, with a corresponding increase in the mean potential temperature in the boundary layer. The simulation results are also used to test existing models for average surface fluxes over heterogeneous terrain. The tested models fail to fully represent the average turbulent heat flux, with models that break the domain into homogeneous subareas grossly underestimating the heat flux magnitude over patches with relatively colder surface temperatures. Motivated by these results, a new parameterization based on local similarity theory is proposed. The new formulation is found to correct the bias over the cold patches, resulting in improved average surface heat flux calculations.


Sign in / Sign up

Export Citation Format

Share Document