Experimental simulation of fragmentation and stratification of core debris on the core catcher of a fast breeder reactor

2016 ◽  
Vol 301 ◽  
pp. 39-48 ◽  
Author(s):  
Dipin S. Pillai ◽  
R. Vignesh ◽  
A. Jasmin Sudha ◽  
S. Pushpavanam ◽  
T. Sundararajan ◽  
...  
Author(s):  
P. M. Vijayakumaran ◽  
C. P. Nagaraj ◽  
C. Paramasivan Pillai ◽  
R. Ramakrishnan ◽  
M. Sivaramakrishna

The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection & Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident.


Author(s):  
Alexandre Lecoanet ◽  
Michel Gradeck ◽  
Xiaoyang Gaus-Liu ◽  
Thomas Cron ◽  
Beatrix Fluhrer ◽  
...  

Abstract This paper deals with ablation of a solid by a high temperature liquid jet. This phenomenon is a key issue to maintain the vessel integrity during the course of a nuclear reactor severe accident with melting of the core. Depending on the course of such an accident, high temperature corium jets might impinge and ablate the vessel material leading to its potential failure. Since Fukushima Daiichi accident, new mitigation measures are under study. As a designed safety feature of a future European SFR, bearing the purpose of quickly draining of the corium out of the core and protecting the reactor vessel against the attack of molten melt, the in-core corium is relocated via discharge tubes to an in-vessel core-catcher has been planned. The core-catcher design to withstand corium jet impingement demands the knowledge of very complex phenomena such as the dynamics of cavity formation and associated heat transfers. Even studied in the past, no complete data are available concerning the variation of jet parameters and solid structure materials. For a deep understanding of this phenomenon, new tests have been performed using both simulant and prototypical jet and core catcher materials. Part of these tests have been done at University of Lorraine using hot liquid water impinging on transparent ice block allowing for the visualizations of the cavity formation. Other tests have been performed in Karlsruhe Institute of Technology using liquid steel impinging on steel block.


Author(s):  
Mengwei Zhang ◽  
Bin Zhang ◽  
Jianqiang Shan

Nuclear reactor severe accidents can lead to the release of a large amount of radioactive material and cause immense disaster to the environment. Since the Fukushima nuclear accident in Japan, the severe accident research has drawn worldwide attention. Based on the one-dimensional heat conduction model, a DEBRIS-HT program for analyzing the heat transfer characteristics of a debris bed after a severe accident of a sodium-cooled fast reactor was developed. The basic idea of the DEBRIS-HT program is to simplify the complex energy transfer process in the debris bed to a simple one-dimensional heat transfer problem by solving the equivalent thermal conductivity in different situations. In this paper, the DEBRIS-HT program code is prepared by using the existing model and compared with the experimental results. The results show that the DEBRIS-HT program can correctly predict the heat transfer process in the fragment bed. In addition, the heat transfer characteristics analysis program is also used to model the core catcher of the China fast reactor. Firstly, the dryout heat flux when all of molten core dropped on the core catcher was calculated, which was compared with the result of Lipinski’s zero dimensional model, and the error between two values is only 11.2%. Then, the temperature distribution was calculated with the heat power of 15MW.


Author(s):  
Tomohisa Kurita ◽  
Mitsuo Komuro ◽  
Ryo Suzuki ◽  
Masato Yamada ◽  
Mika Tahara ◽  
...  

It is necessary to stabilize high temperature molten core in a severe accident for long time without electrical power. The core-catcher is to be installed at the bottom of the lower drywell in order to settle the molten core flowing down from a reactor vessel. Toshiba’s core-catcher system consists of a round basin made up of inclined cooling channels to get natural circulation of the flooding water. So it can cover all pedestal floor and can work in passive manner. We have been confirming an applicability of the core-catcher to actual plants. We have conducted full scaled tests with a unique cooling channel which has inclined rectangular flow section and changing the section area along flow direction in several conditions to evaluate the influence of the parameters on the natural circulation and heat removal capability. The test results showed good heat removal performance with nucleate boiling. However, we should consider a transformation of the cooling channel, for example, by the falling corium. So we calculate the assumed transformation of the cooling channel and conduct natural circulation tests with obstruction in the cooling channel. We confirm that natural circulation flow is stably continues and the cooling channel can remove prescribed heat, even if a flow area have got narrow locally.


2018 ◽  
Vol 1 (6) ◽  
pp. 177-184
Author(s):  
Son An Nguyen ◽  
Nguyen Trung Tran

In order to operate a nuclear power plant, ensuring safety is the most important factor. The function of safety rods are to shut down the reactor in case of emergency. The purpose of this paper to show the result of research and determine the value of safety rods SA, SB. Determination of the Boron concentration corresponding to each group of safety rods of OPR1000 nuclear reactor ensures the safely in the whole operation process. Experimental simulation is carried out in the system simulating core reactor OP1R1000 (CoSi OPR1000). The expermental result corresponds with the theoretic calculated result of Sa and Sb with 1500 pcm, 4000 pcm. The concentrations of Boron appropriately are 134 ppm and 284 ppm, respectively.


Author(s):  
Liancheng Guo ◽  
Andrei Rineiski

To avoid settling of molten materials directly on the vessel wall in severe accident sequences, the implementation of a ‘core catcher’ device in the lower plenum of sodium fast reactor designs is considered. The device is to collect, retain and cool the debris, created when the corium falls down and accumulates in the core catcher, while interacting with surrounding coolant. This Fuel-Coolant Interaction (FCI) leads to a potentially energetic heat and mass transfer process which may threaten the vessel integrity. For simulations of severe accidents, including FCI, the SIMMER code family is employed at KIT. SIMMER-III and SIMMER-IV are advanced tools for the core disruptive accidents (CDA) analysis of liquid-metal fast reactors (LMFRs) and other GEN-IV systems. They are 2D/3D multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics codes coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. However, the experience of SIMMER application to simulation of corium relocation and related FCI is limited. It should be mentioned that the SIMMER code was not firstly developed for the FCI simulation. However, the related models show its basic capability in such complicate multiphase phenomena. The objective of the study was to preliminarily apply this code in a large-scale simulation. An in-vessel model based on European Sodium Fast Reactor (ESFR) was established and calculated by the SIMMER code. In addition, a sensitivity analysis on some modeling parameters is also conducted to examine their impacts. The characteristics of the debris in the core catcher region, such as debris mass and composition are compared. Besides that, the pressure history in this region, the mass of generated sodium vapor and average temperature of liquid sodium, which can be considered as FCI quantitative parameters, are also discussed. It is expected that the present study can provide some numerical experience of the SIMMER code in plant-scale corium relocation and related FCI simulation.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ganesh V. ◽  
Parimal P. Kulkarni ◽  
Arun K. Nayak

Abstract An ex-vessel core catcher is generally used in advanced reactors to mitigate core melt scenarios by stabilizing and cooling the corium for prolonged period by strategically flooding it. The side indirect cooling along with delayed top flooding of water ensures that the water interacts with the oxidic components only after melt inversion. However, water ingression either through the top of melt pool or through the crust–vessel gap may lead to unoxidized metal–water interaction in the melt leading to hydrogen production. To avoid this deleterious scenario, water ingression into the bulk of the melt is to be avoided. In this study, a series of experiments using a scaled down core catcher has been conducted to study the phenomena of melt coolability and water ingression by varying the bottom vessel angle of the core catcher. Three different angles of the bottom plate were considered: 10, 20, and 30 deg. The melt used was a corium simulant in the form of CaO–B2O3.The transient temperature history of melt pool, inside and outside vessel surface temperatures along with the post-test evaluation of the test section reveals that the bottom angle has an effect on water ingression and the resultant melt eruption at different locations. The tests conducted showed that the scaled down core catcher with 10-deg inclination of the bottom plate does not exhibit water ingression, whereas the 20- and 30-deg angle-scaled down core catchers showed water ingression and subsequent melt eruption.


Sign in / Sign up

Export Citation Format

Share Document