scholarly journals MHV amplitudes in super-Yang–Mills and Wilson Loops

2008 ◽  
Vol 794 (1-2) ◽  
pp. 231-243 ◽  
Author(s):  
Andreas Brandhuber ◽  
Paul Heslop ◽  
Gabriele Travaglini
Keyword(s):  
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A. Hasan

Abstract We consider U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory and discuss how to extract the strong coupling limit of non-planar corrections to observables involving the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop. Our approach is based on a suitable saddle point treatment of the Eynard-Orantin topological recursion in the Gaussian matrix model. Working directly at strong coupling we avoid the usual procedure of first computing observables at finite planar coupling λ, order by order in 1/N, and then taking the λ ≫ 1 limit. In the proposed approach, matrix model multi-point resolvents take a simplified form and some structures of the genus expansion, hardly visible at low order, may be identified and rigorously proved. As a sample application, we consider the expectation value of multiple coincident circular supersymmetric Wilson loops as well as their correlator with single trace chiral operators. For these quantities we provide novel results about the structure of their genus expansion at large tension, generalising recent results in arXiv:2011.02885.


2002 ◽  
Vol 2002 (04) ◽  
pp. 040-040 ◽  
Author(s):  
Massimo Bianchi ◽  
Michael B Green ◽  
Stefano Kovacs
Keyword(s):  

2006 ◽  
Vol 748 (3) ◽  
pp. 524-539 ◽  
Author(s):  
V.A. Belavin ◽  
M.N. Chernodub ◽  
I.E. Kozlov

2010 ◽  
Vol 25 (08) ◽  
pp. 627-639
Author(s):  
ZHIFENG XIE

In planar [Formula: see text] supersymmetric Yang–Mills theory we have studied one kind of (locally) BPS Wilson loops composed of a large number of light-like segments, i.e. null zig-zags. These contours oscillate around smooth underlying spacelike paths. At one-loop in perturbation theory, we have compared the finite part of the expectation value of null zig-zags to the finite part of the expectation value of non-scalar-coupled Wilson loops whose contours are the underlying smooth spacelike paths. In arXiv:0710.1060 [hep-th] it was argued that these quantities are equal for the case of a rectangular Wilson loop. Here we present a modest extension of this result to zig-zags of circular shape and zig-zags following non-parallel, disconnected line segments and show analytically that the one-loop finite part is indeed that given by the smooth spacelike Wilson loop without coupling to scalars which the zig-zag contour approximates. We make some comments regarding the generalization to arbitrary shapes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Cristian Vergu

We consider the kinematics of the locally BPS super-Wilson loop in N=4 super-Yang-Mills with scalar coupling from a twistorial point of view. We find that the kinematics can be described either as supersymmetrized pure spinors or as a point in the product of two super-Grassmannian manifolds G2∣2(4∣4)×G2∣2(4∣4). In this description of the kinematics the scalar–scalar correlation function appearing in the one-loop evaluation of the super-Wilson loop can be neatly written as a sum of four superdeterminants.


2012 ◽  
Vol 862 (3) ◽  
pp. 650-670 ◽  
Author(s):  
Somdeb Chakraborty ◽  
Najmul Haque ◽  
Shibaji Roy

Sign in / Sign up

Export Citation Format

Share Document