An inverse tracing method (ITM) to solve the radiating noise induced by the marine propeller sheet cavitation with experimental verifications

2021 ◽  
Vol 234 ◽  
pp. 109240
Author(s):  
Jui-Hsiang Kao
Author(s):  
Yun Long ◽  
Chengzao Han ◽  
Bin Ji ◽  
Xinping Long ◽  
Zhirong Zhang

Abstract In this paper, the unsteady cavitating turbulent flow around a marine propeller behind the hull is simulated by the k-ω SST turbulence model coupled with the Zwart cavitation model. Three systematic refined structured meshes around the hull and propeller have been generated to study the predicted cavitation patterns and pressure fluctuations. Numerical results indicate that the predicted transient cavitating flow behind the hull wake, including sheet cavitation and tip vortex cavitation, shows quasi-periodic feature and agrees fairly well with the available experimental data. The deviations of pressure fluctuations between experimental data and numerical results are much small. With mesh refining, the cavitation region and the magnitudes of the calculated pressure fluctuations increase, while the differences between two adjacent sets of grids become smaller. In addition, the uncertainty of the thrust coefficient obtained by Factor of Safety method is significantly small. Further, the interaction between the cavitation and the vortex by the relative vorticity transport equation is illustrated. Results show that the magnitude of stretching term is obviously larger than the other three terms, and the dilatation term and the baroclinic term both have an important influence on the generation of vortices.


2021 ◽  
Author(s):  
Callum Stark ◽  
Weichao Shi

Abstract Cavitation is an undesirable phenomenon in the maritime industry as it causes damage to the propeller, degrading hydrodynamic performance and increasing the subsequent underwater radiated noise (URN). Therefore, mitigating cavitation on marine propellers is an important area of research in order to reduce carbon emissions emitted from the shipping industry and reduce the rate at which ocean ambient noise levels are increasing. The Humpback whale has provided inspiration to research in the fluid-structure interaction field due to the presence of leading-edge (LE) tubercles on the pectoral fins that allow it to perform acrobatic maneuvers to catch prey. This paper assesses the cavitation containment capability of the LE tubercles on a benchmark marine propeller in both heavy and light cavitating conditions using commercial code STAR-CCM+, unsteady incompressible Reynolds-averaged Navier Stokes (RANS) solver and the Schnerr-Sauer cavitation model to quantify the sheet cavitation present over a range of operating conditions. In summary, in heavy-cavitating conditions, a reduction in sheet cavitation with the inclusion of LE tubercles was observed to a maximum value of 2.75% in all operating conditions considered. A maximum improvement of 3.51% and 1.07% was predicted in propulsive thrust and hydrodynamic efficiency, respectively. In light cavitating conditions, although in some conditions a reduction in cavity volume was observed, this did not result in an improvement in hydrodynamic performance.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Bin Ji ◽  
Xianwu Luo ◽  
Xin Wang ◽  
Xiaoxing Peng ◽  
Yulin Wu ◽  
...  

The cavitating flows around a highly skewed model marine propeller in both uniform flow and wake flow have been simulated by applying a mass transfer cavitation model based on Rayleigh–Plesset equation and k-ω shear stress transport (SST) turbulence model. From comparison of numerical results with the experiment, it is seen that the thrust and torque coefficients of the propeller are predicted satisfactory. It is also clarified from unsteady simulation of cavitating flow around the propeller in wake flow that the whole process of cavitating-flow evolution can be reasonably reproduced including sheet cavitation and tip vortex cavitation observed in the experiments. Furthermore, to study the effect of pressure fluctuation on the surrounding, pressure fluctuations induced by the cavitation as well as the propeller rotation are predicted at three reference positions above the propeller for comparison with the experimental data: The amplitudes of the dominant components corresponding to the first, second, and third blade passing frequencies were satisfactorily predicted. It is noted that the maximum difference of pressure fluctuation between the calculation and experiment reached 20%, which might be acceptable by usual engineering applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Insu Lee ◽  
Sunho Park ◽  
Woochan Seok ◽  
Shin Hyung Rhee

In this study, a cavitation model for propeller analysis was selected using computational fluid dynamics (CFD), and the model was applied to the cavitating flow around the Potsdam Propeller Test Case (PPTC) propeller. The cavitating flow around the NACA 66 hydrofoil was analyzed to select a cavitation model suitable for propeller analysis among various cavitation models. The present and the experimental results were compared to select a cavitation model that would be applied to propeller cavitation analysis. Although the CFD results using the selected cavitation model showed limitations in estimating some of the foam cavitation and bubble cavitation identified in the experimental results, it was identified that foam cavitation and sheet cavitation around the tip were well simulated.


2003 ◽  
Vol 9 (4) ◽  
pp. 263-277 ◽  
Author(s):  
Spyros A. Kinnas ◽  
HanSeong Lee ◽  
Yin L. Young

2021 ◽  
Vol 9 (12) ◽  
pp. 1343
Author(s):  
Muye Ge ◽  
Urban Svennberg ◽  
Rickard E. Bensow

Sheet cavitation inception can be influenced by laminar boundary layer flow separation under Reynolds numbers regimes with transitional flow. The lack of accurate prediction of laminar separation may lead to massive over-prediction of sheet cavitation under certain circumstances, including model scale hydrofoils and marine propellers operating at relatively low Reynolds number. For non-cavitating flows, the local correlation based transition model, γ−Reθ transition model, has been found to provide predictions of laminar separation and resulting boundary layer transition. In the present study, the predicted laminar separation using γ−Reθ transition model is bridged with a cavitation mass transfer model to improve sheet cavitation predictions on hydrofoils and model scale marine propellers. The bridged model is developed and applied to study laminar separation and sheet cavitation predictions on the NACA16012 hydrofoil under different Reynolds numbers and angles of attack. As a reference case, the open case of the PPTC VP1304 model scale marine propeller tested on an inclined shaft is studied. Lastly as an application case, the predictions of cavitation on a commercial marine propeller from Kongsberg is presented for model scale conditions. Simulations using the bridged model and the standard unbridged approach with k−ωSST turbulence model are performed using the open-source package OpenFOAM, both using the Schnerr–Sauer cavitation mass transfer model, and the respective results are compared with available experimental results. The predictions using the bridged model agree well compared to experimental measurements and show significant improvements compared to the unbridged approach.


Sign in / Sign up

Export Citation Format

Share Document