Onset of vortex shedding from a bluff body modified from square cylinder to normal flat plate

2022 ◽  
Vol 244 ◽  
pp. 110393
Author(s):  
M.R. Rastan ◽  
Md. Mahbub Alam ◽  
Hongjun Zhu ◽  
C. Ji
Author(s):  
Arti Pal ◽  
Sudipto Sarkar

Flow over a square cylinder in proximity to a wall for different gap-to-diameter ratios (G/D = 0 to 2, where G is the gap between the cylinder and flat plate and D is the side of the square cylinder) has been studied extensively for a Reynolds Number (Re = U∞D/v, where v is the kinematic viscosity of the fluid and U∞ is the free stream velocity) in the periodic vortex shedding regime. Ansys Fluent is used to solve two-dimensional (2-D), time dependent, incompressible Navier-Stokes equation by SIMPLE [1] algorithm implemented in finite volume method. Interesting flow features and changes in vortex dynamics can be seen by the present simulation, when the cylinder approaches very close to the plate. The boundary layer formed over the flat plate changes its characteristics for these low gap-ratios. Also the modification of the aerodynamic forces and the vortex shedding frequency are thoroughly described to understand the physics behind wake-boundary layer interaction at low Reynolds Number.


Author(s):  
Shigehiro SAKAMOTO ◽  
Akashi MOCHIDA ◽  
Shuzo MURAKAMI ◽  
Wolfgang RODI

2020 ◽  
Vol 23 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
Huan Li ◽  
Xuhui He ◽  
Hanfeng Wang ◽  
Si Peng ◽  
Shuwei Zhou ◽  
...  

Experiments on the aerodynamics of a two-dimensional bluff body simplified from a China high-speed train in crosswinds were carried out in a wind tunnel. Effects of wind angle of attack α varying in [−20°, 20°] were investigated at a moderate Reynolds number Re = 9.35 × 104 (based on the height of the model). Four typical behaviors of aerodynamics were identified. These behaviors are attributed to the flow structure around the upper and lower halves of the model changing from full to intermittent reattachment, and to full separation with a variation in α. An alternate transition phenomenon, characterized by an alteration between large- and small-amplitude aerodynamic fluctuations, was detected. The frequency of this alteration is about 1/10 of the predominant vortex shedding. In the intervals of the large-amplitude behavior, aerodynamic forces fluctuate periodically with a strong span-wise coherence, which are caused by the anti-symmetric vortex shedding along the stream-wise direction. On the contrary, the aerodynamic forces fluctuating at small amplitudes correspond to a weak span-wise coherence, which are ascribed to the symmetric vortex shedding from the upper and lower halves of the model. Generally, the mean amplitude of the large-amplitude mode is 3 times larger than that of the small one. Finally, the effects of Reynolds number were examined within Re = [9.35 × 104, 2.49 × 105]. Strong Reynolds number dependence was observed on the model with two rounded upper corners.


2017 ◽  
Vol 827 ◽  
pp. 357-393 ◽  
Author(s):  
W. Yao ◽  
R. K. Jaiman

We present an effective reduced-order model (ROM) technique to couple an incompressible flow with a transversely vibrating bluff body in a state-space format. The ROM of the unsteady wake flow is based on the Navier–Stokes equations and is constructed by means of an eigensystem realization algorithm (ERA). We investigate the underlying mechanism of vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number via linear stability analysis. To understand the frequency lock-in mechanism and self-sustained VIV phenomenon, a systematic analysis is performed by examining the eigenvalue trajectories of the ERA-based ROM for a range of reduced oscillation frequency $(F_{s})$, while maintaining fixed values of the Reynolds number ($Re$) and mass ratio ($m^{\ast }$). The effects of the Reynolds number $Re$, the mass ratio $m^{\ast }$ and the rounding of a square cylinder are examined to generalize the proposed ERA-based ROM for the VIV lock-in analysis. The considered cylinder configurations are a basic square with sharp corners, a circle and three intermediate rounded squares, which are created by varying a single rounding parameter. The results show that the two frequency lock-in regimes, the so-called resonance and flutter, only exist when certain conditions are satisfied, and the regimes have a strong dependence on the shape of the bluff body, the Reynolds number and the mass ratio. In addition, the frequency lock-in during VIV of a square cylinder is found to be dominated by the resonance regime, without any coupled-mode flutter at low Reynolds number. To further discern the influence of geometry on the VIV lock-in mechanism, we consider the smooth curve geometry of an ellipse and two sharp corner geometries of forward triangle and diamond-shaped bluff bodies. While the ellipse and diamond geometries exhibit the flutter and mixed resonance–flutter regimes, the forward triangle undergoes only the flutter-induced lock-in for $30\leqslant Re\leqslant 100$ at $m^{\ast }=10$. In the case of the forward triangle configuration, the ERA-based ROM accurately predicts the low-frequency galloping instability. We observe a kink in the amplitude response associated with 1:3 synchronization, whereby the forward triangular body oscillates at a single dominant frequency but the lift force has a frequency component at three times the body oscillation frequency. Finally, we present a stability phase diagram to summarize the VIV lock-in regimes of the five smooth-curve- and sharp-corner-based bluff bodies. These findings attempt to generalize our understanding of the VIV lock-in mechanism for bluff bodies at low Reynolds number. The proposed ERA-based ROM is found to be accurate, efficient and easy to use for the linear stability analysis of VIV, and it can have a profound impact on the development of control strategies for nonlinear vortex shedding and VIV.


2013 ◽  
Vol 720 ◽  
pp. 393-423 ◽  
Author(s):  
F. Thiesset ◽  
L. Danaila ◽  
R. A. Antonia

AbstractWe assess the extent to which local isotropy (LI) holds in a wake flow for different initial conditions, which may be geometrical (the shape of the bluff body which creates the wake) and hydrodynamical (the Reynolds number), as a function of the dynamical effects of the large-scale forcing (the mean strain, $ \overline{S} $, combined with the strain induced by the coherent motion, $\tilde {S} $). LI is appraised through either classical kinematic tests or phenomenological approaches. In this respect, we reanalyse existing LI criteria and formulate a new isotropy criterion based on the ratio between the turbulence strain intensity and the total strain ($ \overline{S} + \tilde {S} $). These criteria involve either time-averaged or phase-averaged quantities, thus providing a deeper insight into the dynamical aspect of these flows. They are tested using hot wire data in the intermediate wake of five types of obstacles (a circular cylinder, a square cylinder, a screen cylinder, a normal plate and a screen strip). We show that in the presence of an organized motion, isotropy is not an adequate assumption for the large scales but may be satisfied over a range of scales extending from the smallest dissipative scale up to a scale which depends on the total strain rate that characterizes the flow. The local value of this scale depends on the particular nature of the wake and the phase of the coherent motion. The square cylinder wake is the closest to isotropy whereas the least locally isotropic flow is the screen strip wake. For locations away from the axis, the study is restricted to the circular cylinder only and reveals that LI holds at scales smaller than those that apply at the wake centreline. Arguments based on self-similarity show that in the far wake, the strength of the coherent motion decays at the same rate as that of the turbulent motion. This implies the persistence of the same degree of anisotropy far downstream, independently of the scale at which anisotropy is tested.


1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.


2021 ◽  
Author(s):  
Bastav Borah ◽  
Anand Verma ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Vortex shedding phenomenon leads to a number of different features such as flow induced vibrations, fluid mixing, heat transfer and noise generation. With respect to aerodynamic application, the intensity of vortex shedding and the size of vortices play an essential role in the generation of lift and drag forces on an airfoil. The flat plates are known to have a better lift-to-drag ratio than conventional airfoils at low Reynolds number (Re). A better understanding of the shedding behavior will help aerodynamicists to implement flat plates at low Re specific applications such as fixed-wing micro air vehicle (MAV). In the present study, the shedding of vortices in the wake of a flat plate at low incidence has been studied experimentally in a low-speed subsonic wind tunnel at a Re of 5 × 104. The velocity field in the wake of the plate is measured using a hot wire anemometer. These measurements are taken at specific points in the wake across the flow direction and above the suction side of the flat plate. The velocity field is found to oscillate with one dominant frequency of fluctuation. The Strouhal number (St), calculated from this frequency, is computed for different angles of attack (AoA). The shedding frequency of vortices from the trailing edge of the flat plate has a general tendency to increase with AoA. In this paper, the generation and subsequent shedding of leading edge and trailing edge vortices in the wake of a flat plate are discussed.


Sign in / Sign up

Export Citation Format

Share Document