Wave amplification caused by Bragg resonance on parabolic-type topography

2022 ◽  
Vol 244 ◽  
pp. 110442
Author(s):  
Jian Hao ◽  
Jinxuan Li ◽  
Shuxue Liu ◽  
Lei Wang
1988 ◽  
Vol 53 (6) ◽  
pp. 1181-1197
Author(s):  
Vladimír Kudrna

The paper presents alternative forms of partial differential equations of the parabolic type used in chemical engineering for description of heat and mass transfer. It points at the substantial difference between the classic form of the equations, following from the differential balances of mass and enthalpy, and the form following from the concept of stochastic motion of particles of mass or energy component. Examples are presented of the processes that may be described by the latter method. The paper also reviews the cases when the two approaches become identical.


The propagation properties of linear wave motions in magnetic and/or velocity shears which vary in one coordinate z (say) are usually governed by a second order linear ordinary differential equation in the independent variable z. It is proved that associated with any such differential equation there always exists a quantity A which is independent of z. By employing A a measure of the intensity of the wave, this result is used to investigate the general propagation properties of hydromagnetic-gravity waves (e.g. critical level absorption, valve effects and wave amplification) in magnetic and/or velocity shears, using a full wave treatment. When variations in the basic state are included, the governing differential equation usually has more singularities than it has in the W.K.B.J. approximation, which neglects all variations in the background state. The study of a wide variety of models shows that critical level behaviour occurs only at the singularities predicted by the W.K.B.J. approximation. Although the solutions of the differential equation are necessarily singular at the irregularities whose presence is solely due to the inclusion of variations in the basic state, the intensity of the wave (as measured by A) is continuous there. Also the valve effect is found to persist whatever the relation between the wavelength of the wave and the scale of variations of the background state. In addition, it is shown that a hydromagnetic-gravity wave incident upon a finite magnetic and/or velocity shear can be amplified (or over-reflected) in the absence of any critical levels within the shear layer. In a Boussinesq fluid rotating uniformly about the vertical, wave amplification can occur if the horizontal vertically sheared flow and magnetic field are perpendicular. In a compressible isothermal fluid, on the other hand, wave amplification not only occurs in both magnetic-velocity and velocity shears but also in a magnetic shear acting alone.


1979 ◽  
Vol 84 ◽  
pp. 151-153
Author(s):  
James W-K. Mark ◽  
Linda Sugiyama ◽  
Robert H. Berman ◽  
Giuseppe Bertin

A concentrated nuclear bulge with about 30% of the galaxy mass is sufficient (Lin, 1975; Berman and Mark, 1978) to eliminate strong bar-forming instabilities which dominate the dynamics of the stellar disk. Weak bar-like or oval distortions might remain depending on the model. In such systems self-excited discrete modes give rise to global spiral patterns which are maintained in the presence of differential rotation and dissipation (cf. especially the spiral patterns in Bertin et al., 1977, 1978). These spiral modes are standing waves that are physically analyzable (Mark, 1977) into a superposition of two travelling waves propagating in opposite directions back and forth between galactic central regions and corotation (a resonator). Only a few discrete pattern frequencies are allowed. An interpretation is that the central regions and corotation radius must be sufficiently far apart so that a Bohr-Sommerfeld type of phase-integral condition is satisfied for the wave system of each mode. The temporal growth of these modes is mostly due to an effect of Wave Amplification by Stimulated Emission (of Rotating Spirals, abbrev. WASERS, cf. Mark 1976) which occurs in the vicinity of corotation. In some galaxies one mode might be predominent while other galaxies could exhibit more complicated spiral structure because several modes are present. Weak barlike or oval distortions hardly interfere with the structure of these modes. But they might nevertheless contribute partially towards strengthening the growth of one mode relative to another, as well as affecting the kinematics of the gaseous component.


2019 ◽  
Vol 9 (9) ◽  
pp. 1923
Author(s):  
Biqiang Jiang ◽  
Zhen Hao ◽  
Dingyi Feng ◽  
Kaiming Zhou ◽  
Lin Zhang ◽  
...  

We propose and experimentally demonstrate a hybrid grating, in which an excessively tilted fiber grating (Ex-TFG) and a fiber Bragg grating (FBG) were co-inscribed in a reduced-diameter fiber (RDF). The hybrid grating showed strong resonances due to coupling among core mode and a set of polarization-dependent cladding modes. This coupling showed enhanced evanescent fields by the reduced cladding size, thus allowing stronger interaction with the surrounding medium. Moreover, the FBG’s Bragg resonance confined by the thick cladding was exempt from the change of the surrounding medium’s refractive index (RI), and then the FBG can work as a temperature compensator. As a result, the Ex-TFG in RDF promised a highly sensitive RI measurement, with a sensitivity up to ~1224 nm/RIU near the RI of 1.38. Through simultaneous measurement of temperature and RI, the temperature dependence of water’s RI is then determined. Therefore, the proposed hybrid grating with a spectrum of multi-peaks embedded with a sharp Bragg resonance is a promising alternative for the simultaneous measurement of multi-parameters for many RI-based sensing applications.


2013 ◽  
Vol 45 (1) ◽  
pp. 164-185 ◽  
Author(s):  
Pavel V. Gapeev ◽  
Albert N. Shiryaev

We study the Bayesian problems of detecting a change in the drift rate of an observable diffusion process with linear and exponential penalty costs for a detection delay. The optimal times of alarms are found as the first times at which the weighted likelihood ratios hit stochastic boundaries depending on the current observations. The proof is based on the reduction of the initial problems into appropriate three-dimensional optimal stopping problems and the analysis of the associated parabolic-type free-boundary problems. We provide closed-form estimates for the value functions and the boundaries, under certain nontrivial relations between the coefficients of the observable diffusion.


2017 ◽  
Vol 25 (26) ◽  
pp. 33226 ◽  
Author(s):  
Tianzhuo Zhao ◽  
Zhongwei Fan ◽  
Hong Xiao ◽  
Ke Huang ◽  
Zhenao Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document