Coastal adaptation to Sea Level Rise: An overview of Egypt's efforts

2022 ◽  
Vol 218 ◽  
pp. 106024
Author(s):  
Mahmoud Sharaan ◽  
Moheb Iskander ◽  
Keiko Udo
2021 ◽  
Author(s):  
◽  
Georgina Hart

<p>The Earth's climate system is entering a period of dynamic change after millennia of relatively stable climate. Coastal communities will need to adapt to dynamically shifting coastal environments as the climate system changes and sea levels rise. This study adds to a growing literature that investigates coastal vulnerability, adaptation, and resilience to climate change. It investigates regional scale social and institutional barriers to adaptation to sea level rise; examines the exposure, sensitivity and adaptation options at two coastal settlements in the Auckland region – Mission Bay/Kohimarama and Kawakawa Bay; and it analyses coastal adaptation response options from a resilience perspective. Mission Bay/Kohimarama and Kawakawa Bay, Auckland will experience increasing coastal hazard risk as the numbers of people and property potentially affected by storm events increases as sea level rises. Findings from the present study suggest that existing settlements in the Auckland region may already be 'locked in' to a coastal adaptation approach focused on maintaining the current coastline through coastal stabilisation, an approach that will decrease community resilience and increase vulnerability in the long term, even if this is found to be a successful response in the short term. Retreat offers an alternative approach that is strongly aligned with reducing community vulnerability and increasing resilience; however, strong opposition from communities to any retreat approach is expected. Developing trusted climate science information, education around coastal hazard risk, and participatory community led decision-making are identified as central enablers for a retreat approach to be included as a viable coastal adaptation option for communities in the Auckland region.</p>


2020 ◽  
Author(s):  
Rosanne Martyr-Koller ◽  
Tabea Lissner ◽  
Carl-Friedrich Schleussner

&lt;p&gt;Climate impacts increase with higher warming and evidence is mounting that impacts increase strongly above 1.5&amp;#176;C. Therefore, adaptation needs also rise substantially at higher warming levels. Further&lt;strong&gt;, &lt;/strong&gt;limits to adaptation will be reached above 1.5&amp;#176;C and loss and damage will be inferred. Coastal Nature-based Solutions (NbS) have arisen as popular adaptation options, particularly for coastal developing economies and Small Island Developing States (SIDS), because of their lower overall costs compared to traditional grey infrastructure approaches such as seawalls and levees; their economic co-benefits through positive effects on sectors such as tourism and fisheries; and a broader desire to shift toward so-called blue economies. Two NbS of particular interest for coastal protection are: 1) coral reefs, which reduce coastal erosion and flooding through wave attenuation; and 2) mangroves, which provide protection from storms, tsunamis and coastal erosion. Although there is international enthusiasm to implement these solutions, there is limited understanding of the future viability of these ecosystems, particularly in their capacities as coastal adaptation service providers, in a warmer world.&lt;/p&gt;&lt;p&gt;In this presentation, we highlight how long and with how much coverage coral and mangrove ecosystems can provide coastal protection services for future climate scenarios, using air temperature and sea level rise as climate change indicators. A mathematical model for each ecosystem is developed, based on the physical parameters necessary for the sustainability of these ecosystems. We investigate the protective capabilities of each ecosystem under warming and sea level rise scenarios compatible with: below 1.5&amp;#176;C warming; below 2&amp;#176;C warming; warming based on current global commitments to carbon emissions reductions (3-3.5&amp;#176;C); and with no carbon mitigation (6&amp;#176;C). Results show what temperature and sea level rise values beyond which these ecosystems can no longer provide coastal protective services. These results have also been framed in a temporal window to show when these services may not be feasible, beyond which more costly adaptation measures and/or loss and damage may be incurred.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Georgina Hart

<p>The Earth's climate system is entering a period of dynamic change after millennia of relatively stable climate. Coastal communities will need to adapt to dynamically shifting coastal environments as the climate system changes and sea levels rise. This study adds to a growing literature that investigates coastal vulnerability, adaptation, and resilience to climate change. It investigates regional scale social and institutional barriers to adaptation to sea level rise; examines the exposure, sensitivity and adaptation options at two coastal settlements in the Auckland region – Mission Bay/Kohimarama and Kawakawa Bay; and it analyses coastal adaptation response options from a resilience perspective. Mission Bay/Kohimarama and Kawakawa Bay, Auckland will experience increasing coastal hazard risk as the numbers of people and property potentially affected by storm events increases as sea level rises. Findings from the present study suggest that existing settlements in the Auckland region may already be 'locked in' to a coastal adaptation approach focused on maintaining the current coastline through coastal stabilisation, an approach that will decrease community resilience and increase vulnerability in the long term, even if this is found to be a successful response in the short term. Retreat offers an alternative approach that is strongly aligned with reducing community vulnerability and increasing resilience; however, strong opposition from communities to any retreat approach is expected. Developing trusted climate science information, education around coastal hazard risk, and participatory community led decision-making are identified as central enablers for a retreat approach to be included as a viable coastal adaptation option for communities in the Auckland region.</p>


2021 ◽  
Author(s):  
Lena Reimann ◽  
Bryan Jones ◽  
Claudia Wolff ◽  
Athanasios Vafeidis

&lt;p&gt;Accelerating sea-level rise (SLR) in the course of the 21&lt;sup&gt;st&lt;/sup&gt; century will lead to population displacement and migration, the intensity and patterns of which will largely depend on the type and efficiency of adaptation strategies pursued. Thus far, the potential feedbacks between adaptation and SLR-induced migration have not been considered in continental-scale assessments. This study explores the effect of three coastal adaptation policy scenarios &amp;#8211; 1) &amp;#8216;build with nature&amp;#8217;, 2) &amp;#8216;hold the line&amp;#8217;, 3) &amp;#8216;save yourself&amp;#8217; &amp;#8211; on migration due to SLR, using a gravity-based population downscaling model calibrated to the Mediterranean region. The policy scenarios are consistent with the socioeconomic developments described under the Shared Socioeconomic Pathways (SSPs). Combining these with a range of SLR scenarios, we produce spatial population projections from 2020 to 2100 that allow for estimating SLR-induced migration with and without adaptation. Preliminary results show that, without adaptation, SLR may lead to migration of 10 million (SSP1-RCP2.6) to 16 million (SSP3-RCP4.5) people currently living in low-lying coastal areas of the Mediterranean until 2100. With adaptation, the number of migrants until 2100 could be reduced by 2.1 million under the &amp;#8216;build with nature&amp;#8217; scenario (SSP1-RCP2.6) and by up to 6 million under the &amp;#8216;hold the line&amp;#8217; scenario (SSP5-RCP8.5). These results suggest that adaptation can be effective in reducing the number of migrants due to SLR, in particular when engineered solutions such as dikes are pursued. However, while the number of SLR-related migrants can be reduced by 50% under the &amp;#8216;hold the line&amp;#8217; scenario, impacts would be high in case of protection failure during extreme sea level conditions. Allowing for exploring the effects of different adaptation policies on SLR-induced migration, we anticipate that our findings can provide a suitable basis for decision-making, for example in adaptation planning or regional development planning.&lt;/p&gt;


2020 ◽  
Author(s):  
Jochen Hinkel

&lt;p&gt;&lt;span&gt;Despite the widespread need to use sea-level rise information in coastal adaptation decision making, the production of this information rarely starts from a decision making perspective. This constitutes a major gap, because the specific sea-level information needed for adaptation depends on the type of decision a coastal decision maker is facing. Recent work developed in the context of the World &lt;span lang=&quot;en-GB&quot;&gt;C&lt;/span&gt;&lt;span lang=&quot;en-GB&quot;&gt;limate&lt;/span&gt;&lt;span lang=&quot;en-GB&quot;&gt;R&lt;/span&gt;&lt;span lang=&quot;en-GB&quot;&gt;esearch&lt;/span&gt;Program (WCRP) Grand Challenge &amp;#8220;Regional Sea-Level Change and Coastal Impacts&amp;#8221; and the Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) of the Intergovernmental Panel on Climate Change (IPCC) has started to address this gap by drawing upon the decision analysis literature. This paper presents this work identifying what kind of mean sea-level rise (SLR) information is needed for local coastal adaptation decisions. A special emphasis is placed on the contributions of the melting of the ice sheets of Greenland and Antarctica to global mean SLR, as &lt;span lang=&quot;en-GB&quot;&gt;t&lt;/span&gt;&lt;span lang=&quot;en-GB&quot;&gt;hese processes &lt;/span&gt;may contribute significantly to future SLR and, at the same time, are most uncertain. First, different types of coastal adaptation decisions are characterized in terms of decision horizons and users' &lt;span lang=&quot;en-GB&quot;&gt;u&lt;/span&gt;&lt;span lang=&quot;en-GB&quot;&gt;ncertainty&lt;/span&gt;tolerance. Next, suitable decision analysis approaches and sea-level information required for these are identified. Finally it is discussed if and how these information needs can be met given the state-of-the-art of sea-level science. It is found that four types of information are needed: i) probabilistic predictions for short term decisions when users are uncertainty tolerant; ii) high-end and low-end SLR scenarios chosen for different levels of uncertainty tolerance; iii) upper bounds of SLR for users with a low uncertainty tolerance; and iv) learning scenarios derived from estimating what knowledge will plausibly emerge about SLR over time. Probabilistic predictions can only be attained for the near term (i.e., 2030-2050) and for locations for which modes of climate variability are well understood and the vertical land movement contribution to local sea-levels is small. Meaningful SLR upper bounds cannot be defined unambiguously from a physical perspective. Low to high-end scenarios for different levels of uncertainty tolerance, and learning scenarios can be produced, but this involves both expert and user judgments. The decision analysis procedure elaborated here can be applied to other types of climate information that are required for adaptation purposes.&lt;/span&gt;&lt;/p&gt;


2020 ◽  
Vol 15 (3) ◽  
pp. 034007 ◽  
Author(s):  
M Haasnoot ◽  
J Kwadijk ◽  
J van Alphen ◽  
D Le Bars ◽  
B van den Hurk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document