Simultaneous measurement of temperature and refractive index with F–P microcavity sensor based on graded-index few mode fiber

2020 ◽  
Vol 455 ◽  
pp. 124577 ◽  
Author(s):  
Xinghu Fu ◽  
Lianxu Liu ◽  
Shuming Huang ◽  
Guangwei Fu ◽  
Wa Jin ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4421
Author(s):  
Ángela Barreda ◽  
Pablo Albella ◽  
Fernando Moreno ◽  
Francisco González

High refractive index dielectric (HRID) nanoparticles are a clear alternative to metals in nanophotonic applications due to their low losses and directional scattering properties. It has been demonstrated that HRID dimers are more efficient scattering units than single nanoparticles in redirecting the incident radiation towards the forward direction. This effect was recently reported and is known as the “near zero-backward” scattering condition, attained when nanoparticles forming dimers strongly interact with each other. Here, we analyzed the electromagnetic response of HRID isolated nanoparticles and aggregates when deposited on monolayer and graded-index multilayer dielectric substrates. In particular, we studied the fraction of radiation that is scattered towards a substrate with known optical properties when the nanoparticles are located on its surface. We demonstrated that HRID dimers can increase the radiation emitted towards the substrate compared to that of isolated nanoparticles. However, this effect was only present for low values of the substrate refractive index. With the aim of observing the same effect for silicon substrates, we show that it is necessary to use a multilayer antireflection coating. We conclude that dimers of HRID nanoparticles on a graded-index multilayer substrate can increase the radiation scattered into a silicon photovoltaic wafer. The results in this work can be applied to the design of novel solar cells.


2019 ◽  
Vol 9 (9) ◽  
pp. 1923
Author(s):  
Biqiang Jiang ◽  
Zhen Hao ◽  
Dingyi Feng ◽  
Kaiming Zhou ◽  
Lin Zhang ◽  
...  

We propose and experimentally demonstrate a hybrid grating, in which an excessively tilted fiber grating (Ex-TFG) and a fiber Bragg grating (FBG) were co-inscribed in a reduced-diameter fiber (RDF). The hybrid grating showed strong resonances due to coupling among core mode and a set of polarization-dependent cladding modes. This coupling showed enhanced evanescent fields by the reduced cladding size, thus allowing stronger interaction with the surrounding medium. Moreover, the FBG’s Bragg resonance confined by the thick cladding was exempt from the change of the surrounding medium’s refractive index (RI), and then the FBG can work as a temperature compensator. As a result, the Ex-TFG in RDF promised a highly sensitive RI measurement, with a sensitivity up to ~1224 nm/RIU near the RI of 1.38. Through simultaneous measurement of temperature and RI, the temperature dependence of water’s RI is then determined. Therefore, the proposed hybrid grating with a spectrum of multi-peaks embedded with a sharp Bragg resonance is a promising alternative for the simultaneous measurement of multi-parameters for many RI-based sensing applications.


2014 ◽  
Vol 35 (4) ◽  
Author(s):  
Angshuman Majumdar ◽  
Satabdi Das ◽  
Sankar Gangopadhyay

AbstractBased on the simple power series formulation of fundamental mode developed by Chebyshev formalism in the low V region, we prescribe analytical expression for effective core area of graded index fiber. Taking step and parabolic index fibers as examples, we estimate the effective core areas as well as effective refractive index for different normalized frequencies (V number) having low values. We also show that our estimations match excellently with the available exact results. The concerned predictions by our method require little computation. Thus, this simple but accurate formalism will be user friendly for the system engineers.


2016 ◽  
Vol 45 (3) ◽  
pp. 306003
Author(s):  
时菲菲 SHI Fei-fei ◽  
赵春柳 ZHAO Chun-liu ◽  
徐贲 XU Ben ◽  
王东宁 WANG Dong-ning

2019 ◽  
Vol 31 (2) ◽  
pp. 189-192 ◽  
Author(s):  
Shuhui Liu ◽  
Hailiang Zhang ◽  
Litong Li ◽  
Liangming Xiong ◽  
Ping Shum

1997 ◽  
Vol 4 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Masato Ohmi ◽  
Takehisa Shiraishi ◽  
Hideyuki Tajiri ◽  
Masamitsu Haruna

Sign in / Sign up

Export Citation Format

Share Document