Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency

2020 ◽  
Vol 456 ◽  
pp. 124581 ◽  
Author(s):  
Vishal Sorathiya ◽  
Vibhuti Dave
2009 ◽  
Vol 1223 ◽  
Author(s):  
Claudio Amabile ◽  
Enrico Prati

ABSTRACTNegative refractive index materials tuned at n = -1 are believed to realize perfect lensing of real and evanescent modes. Metamaterials are the natural candidates to realize negative refractive index by the inversion of the effective dielectric permittiviy and magnetic permeability. The effect of the density on the tuning in the proximity of n = -1 is studied in order to find viable solutions to the issue of discretization of the lattice which correspondingly produces steps in the electromagnetic parameters of metamaterials. We study the microwave frequency negative refractive index of a metamaterial as a function of the density of the lattice period. The negative refractive index is realized by means of a waveguide filled with a split ring resonator lattice, exploited below the cut off frequency of the waveguide. We discuss the pass-band behaviour and the collective effects on the negative refractive index.


2016 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
V. P. Sarin ◽  
M. P. Jayakrishnan ◽  
C. K. Aanandan ◽  
M. Pezholil ◽  
V. Kesavath

The enhanced radiation performance of a dipole antenna backed by the split ring resonator-continuous wire pair array working in the H┴ excitation scenario is presented in this paper.  The H┴ excitation scenario of the metamaterial is used to get zero reflection phase resulting in enhanced gain performance. The two layer meta-structure along with the dipole is fabricated on a low cost substrate of dielectric constant 4.4 and height 1mm. The reflection properties of the metamaterial structure and its effect on the radiation performance of the dipole antenna are presented in this paper.


2020 ◽  
Vol 9 (1) ◽  
pp. 26-30
Author(s):  
Romi Fadli Syahputra ◽  
Yan Soerbakti ◽  
Riad Syech ◽  
Erman Taer ◽  
Saktioto Saktioto

Piranti-piranti elektronik maupun optoelektronik yang efisien dan responsif saat ini tengah masif dikembangkan dalam beragam bentuk dan jenis. Meta-material merupakan rancangan optoelektronik yang unik dengan sifat elektromagnetik yang tidak ditemukan secara alami, salah satunya adalah peristiwa indeks bias negatif. Eksplorasi terhadap banyak ragam struktur metamaterial sangat penting dilakukan untuk mengidentifikasi karakteristik tiap struktur. Salah satu struktur metamaterial yang menarik dikaji adalah bentuk heksagonal. Penelitian ini menginvestigasi karakteristik frekuensi resonan dan distribusi medan elektromagnetik metamaterial split ring resonator heksagonal (SRR-H) yang dikombinasikan dengan stripe line (SL) berupa logam tembaga. Lebih lanjut, jumlah SL divariasikan dari 0 - 5 unit dan disimulasikan dalam medium udara dalam rentang frekuensi 1 – 7,5 GHz. Hasil simulasi menunjukan adanya pergeseran frekuensi resonan untuk tiap penambahan SL dalam rentang frekuensi 4,31 – 5,82 GHz. Sebaran medan listrik cenderung terpusat pada cincin resonator sedangkan medan magnet cenderung terdistribusi pada SL. Desain metamaterial SRR-H dengan 3 SL memberikan respon disipasi energi yang terkecil dengan medan E maksimum 2,59 kV×m-1 dan medan H maksimum 8,69 A×m-1. Desain SRR-H ini cukup potensial untuk diaplikasikan sebagai antena gelombang elektomagnetik yang efisien dan juga sebagai biosensor. Efficient and responsive electronic and optoelectronic devices are currently being massively developed in various forms and types. Metamaterial is a unique optoelectronic design with electromagnetic properties that are not found naturally, one of its properties is a negative refractive index. Exploration of different types of metamaterial structures is very important to identify the characteristics of each structure. One of the interesting metamaterial structures is a hexagonal shape. This research investigates the resonant frequency characteristics and electromagnetic field distribution of split-ring resonator (SRR-H) hexagonal-shaped metamaterial which is combined with the copper stripe line (SL). Furthermore, the number of SL is varied from 0 to 5 units and simulated in the air medium in frequency range of 1 - 7.5 GHz. The simulation results show a resonant frequency shift occurred for each SL combination in the 4.31 - 5.82 GHz frequency range. The distribution of the electric field tends to be concentrated on the resonator while the magnetic field tends to be distributed on the SL. The SRR-H metamaterial with 3 SL provides the smallest energy dissipation response with a maximum E field of 2.59 kV×m-1 and a maximum H field of 8.69 A×m-1. The SRR-H design is potential enough to be applied as an efficient electromagnetic wave antenna and also as a biosensor.Keywords: Metamaterials, SRR-H, strip line, resonant frequency, electromagnetic field


2012 ◽  
Vol 54 (6) ◽  
pp. 1415-1416 ◽  
Author(s):  
P. Menon. Ragi ◽  
K. S. Umadevi ◽  
Paul. Nees ◽  
Jovia Jose ◽  
M. V. Keerthy ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 878
Author(s):  
Salah Uddin Afsar ◽  
Mohammad Rashed Iqbal Faruque ◽  
Mohammad Jakir Hossain ◽  
Mayeen Uddin Khandaker ◽  
Hamid Osman ◽  
...  

A triple-band epsilon-negative (ENG) metamaterial based on a split ring resonator (SSR) with a modified hexagonal-shaped metal strip proposed in this study is a new combination of a single slit square resonator and a modified hexagonal-shaped metal strip. The desired unit cell FR-4 (lossy) that was selected as the substrate was 1.6 mm thick. Following the assessment of the unit cell, a high-frequency electromagnetic simulator like the computer simulation technology (CST) microwave studio was applied to assess the S-parameters. The proposed design exhibited resonance at 2.89, 9.42, and 15.16 GHz. The unit cell also demonstrated negative permittivity in the frequency ranges 2.912–3.728 GHz, 9.552–10.144 GHz, and 15.216–17.328 GHz, along with a negative refractive index. An effective medium ratio (EMR) of 11.53 is an indicator of the goodness of the metamaterial unit cell. It is deliberate at the lowermost resonance frequency of 2.89 GHz. Moreover, the simulated results that were validated using HFSS and equivalent circuit model indicated slight variations. The proposed design was finalised based on several parametric studies, including design optimisation, different unit cell sizes, various substrate materials, and different electromagnetic (EM) field propagations. The proposed triple band (S, X, and Ku bands) negative permittivity metamaterial unit cell can be utilised for various wireless applications, such as microwave communication, satellite communication, and long-distance radio communication.


Sign in / Sign up

Export Citation Format

Share Document