Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application

2020 ◽  
Vol 129 ◽  
pp. 106031 ◽  
Author(s):  
Feifei Yang ◽  
Jun Mou ◽  
Chenguang Ma ◽  
Yinghong Cao
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Ying-Qian Zhang ◽  
Xin He ◽  
Xing-Yuan Wang

AbstractIn this paper, a novel image encryption algorithm based on the Once Forward Long Short Term Memory Structure (OF-LSTMS) and the Two-Dimensional Coupled Map Lattice (2DCML) fractional-order chaotic system is proposed. The original image is divided into several image blocks, each of which is input into the OF-LSTMS as a pixel sub-sequence. According to the chaotic sequences generated by the 2DCML fractional-order chaotic system, the parameters of the input gate, output gate and memory unit of the OF-LSTMS are initialized, and the pixel positions are changed at the same time of changing the pixel values, achieving the synchronization of permutation and diffusion operations, which greatly improves the efficiency of image encryption and reduces the time consumption. In addition the 2DCML fractional-order chaotic system has better chaotic ergodicity and the values of chaotic sequences are larger than the traditional chaotic system. Therefore, it is very suitable to image encryption. Many simulation results show that the proposed scheme has higher security and efficiency comparing with previous schemes.


2020 ◽  
Vol 11 (11) ◽  
pp. 5399-5417
Author(s):  
ZhiWei Peng ◽  
WenXin Yu ◽  
JunNian Wang ◽  
Jing Wang ◽  
Yu Chen ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
pp. 381-388 ◽  
Author(s):  
Jialin Hou ◽  
Rui Xi ◽  
Ping Liu ◽  
Tianliang Liu

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3130
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed

Fractional-order chaotic systems have more complex dynamics than integer-order chaotic systems. Thus, investigating fractional chaotic systems for the creation of image cryptosystems has been popular recently. In this article, a fractional-order memristor has been developed, tested, numerically analyzed, electronically realized, and digitally implemented. Consequently, a novel simple three-dimensional (3D) fractional-order memristive chaotic system with a single unstable equilibrium point is proposed based on this memristor. This fractional-order memristor is connected in parallel with a parallel capacitor and inductor for constructing the novel fractional-order memristive chaotic system. The system’s nonlinear dynamic characteristics have been studied both analytically and numerically. To demonstrate the chaos behavior in this new system, various methods such as equilibrium points, phase portraits of chaotic attractor, bifurcation diagrams, and Lyapunov exponent are investigated. Furthermore, the proposed fractional-order memristive chaotic system was implemented using a microcontroller (Arduino Due) to demonstrate its digital applicability in real-world applications. Then, in the application field of these systems, based on the chaotic behavior of the memristive model, an encryption approach is applied for grayscale original image encryption. To increase the encryption algorithm pirate anti-attack robustness, every pixel value is included in the secret key. The state variable’s initial conditions, the parameters, and the fractional-order derivative values of the memristive chaotic system are used for contracting the keyspace of that applied cryptosystem. In order to prove the security strength of the employed encryption approach, the cryptanalysis metric tests are shown in detail through histogram analysis, keyspace analysis, key sensitivity, correlation coefficients, entropy analysis, time efficiency analysis, and comparisons with the same fieldwork. Finally, images with different sizes have been encrypted and decrypted, in order to verify the capability of the employed encryption approach for encrypting different sizes of images. The common cryptanalysis metrics values are obtained as keyspace = 2648, NPCR = 0.99866, UACI = 0.49963, H(s) = 7.9993, and time efficiency = 0.3 s. The obtained numerical simulation results and the security metrics investigations demonstrate the accuracy, high-level security, and time efficiency of the used cryptosystem which exhibits high robustness against different types of pirate attacks.


2020 ◽  
Vol 30 (15) ◽  
pp. 2050233
Author(s):  
Guodong Ye ◽  
Kaixin Jiao ◽  
Huishan Wu ◽  
Chen Pan ◽  
Xiaoling Huang

Herein, an asymmetric image encryption algorithm based on RSA cryptosystem and a fractional-order chaotic system is proposed. Its security depends on RSA algorithm. First, a pair of public and private keys is generated by RSA algorithm. Subsequently, a random message shown as plaintext key information is encrypted by the public key and RSA to achieve ciphertext key information. Next, a new transformation map is established to generate the initial key according to the ciphertext key information. Subsequently, the initial key is substituted into a fractional hyperchaotic system equation to calculate the keystream. Finally, permutation and diffusion operations are employed to encrypt a plain image to obtain the final cipher image. In the proposed algorithm, different keys for encryption and decryption are designed under an asymmetric architecture. The RSA algorithm and fractional chaotic system are combined to encrypt images; in particular, a fast algorithm for computing power multiplication is employed, which significantly improves the encryption effect and enhances the security. Simulation results show that the proposed algorithm is effective and applicable to image protection.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yujun Niu ◽  
Xuming Sun ◽  
Cheng Zhang ◽  
Hongjun Liu

This paper investigates the anticontrol of the fractional-order chaotic system. The necessary condition of the anticontrol of the fractional-order chaotic system is proposed, and based on this necessary condition, a 3D fractional-order chaotic system is driven to two new 4D fractional-order hyperchaotic systems, respectively, without changing the parameters and fractional order. Hyperchaotic properties of these new fractional dynamic systems are confirmed by Lyapunov exponents and bifurcation diagrams. Furthermore, a color image encryption algorithm is designed based on these fractional hyperchaotic systems. The effectiveness of their application in image encryption is verified.


Sign in / Sign up

Export Citation Format

Share Document