scholarly journals Numerical simulation and experimental validation of residual stress and welding distortion induced by laser-based welding processes of thin structural steel plates in butt joint configuration

2018 ◽  
Vol 104 ◽  
pp. 170-182 ◽  
Author(s):  
Ehsan Dezhparvar Derakhshan ◽  
Nima Yazdian ◽  
Blake Craft ◽  
Steve Smith ◽  
Radovan Kovacevic
Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


2018 ◽  
Vol 37 (5) ◽  
pp. 397-403 ◽  
Author(s):  
Shude Ji ◽  
Zhanpeng Yang ◽  
Quan Wen ◽  
Yumei Yue ◽  
Liguo Zhang

AbstractTrailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.


2015 ◽  
Vol 88 ◽  
pp. 1296-1309 ◽  
Author(s):  
Ninshu Ma ◽  
Zhipeng Cai ◽  
Hui Huang ◽  
Dean Deng ◽  
Hidekazu Murakawa ◽  
...  

Polimery ◽  
2008 ◽  
Vol 53 (04) ◽  
pp. 304-310 ◽  
Author(s):  
TAHER AZDAST ◽  
AMIR HOSSEIN BEHRAVESH ◽  
KIUMARS MAZAHERI ◽  
MOHAMMAD MEHDI DARVISHI

1992 ◽  
Vol 114 (4) ◽  
pp. 441-451 ◽  
Author(s):  
S. Brown ◽  
H. Song

Current simulations of welding distortion and residual stress have considered only the local weld zone. A large elastic structure surrounding a weld, however, can couple with the welding operation to produce a final weld state much different from that resulting when a smaller structure is welded. The effect of this coupling between structure and weld has the potential of dominating the final weld distortion and residual stress state. This paper employs both two-and three-dimensional finite element models of a circular cylinder and stiffening ring structure to investigate the interaction of a large structure on weld parameters such as weld gap clearance (fitup) and fixturing. The finite element simulation considers the full thermo-mechanical problem, uncoupling the thermal from the mechanical analysis. The thermal analysis uses temperature-dependent material properties, including latent heat and nonlinear heat convection and radiation boundary conditions. The mechanical analysis uses a thermal-elastic-plastic constitutive model and an element “birth” procedure to simulate the deposition of weld material. The effect of variations of weld gap clearance, fixture positions, and fixture types on residual stress states and distortion are examined. The results of these analyses indicate that this coupling effect with the surrounding structure should be included in numerical simulations of welding processes, and that full three-dimensional models are essential in predicting welding distortion. Elastic coupling with the surrounding structure, weld fitup, and fixturing are found to control residual stresses, creating substantial variations in highest principal and hydrostatic stresses in the weld region. The position and type of fixture are shown to be primary determinants of weld distortion.


Author(s):  
M. Tsunori ◽  
C. M. Davies ◽  
D. Dye ◽  
K. M. Nikbin

Current trends in ship design are to reduce panel thickness in order to minimise the vessels weight and hence maximise speed. These panels are manufactured through butt welding thin steel plates with the addition of fillet welded stiffeners. Excessive distortions are exhibited in these thin plates due to the welding process, resulting in major rectification or re-manufacturing costs. The aim of this study is to develop a tool to predict welding residual stresses and distortions in order to understand their governing factors, and thus enabling the optimum fabrication processes to be realized to minimise welding distortion. Finite element simulations are performed of the butt and fillet welding process in 4 mm thick plates of ferritic DH-36 steel and the residual stresses and distortions are predicted. Thermal and residual stress profiles are verified against experimental measurements. The effects of plate and stiffener dimensions are examined numerically. In addition, a sensitivity analysis has been carried out to quantify the effects of restraint on a small butt welded plate. It is concluded that final distortion may be severely reduced, in the plate size considered, if only an out-of-plane constraint is imposed on the plate’s surfaces. Further welding experiments are required to validate these findings.


2013 ◽  
Vol 213 (12) ◽  
pp. 2323-2328 ◽  
Author(s):  
Daniel F.O. Braga ◽  
Harry E. Coules ◽  
Thilo Pirling ◽  
Valentin Richter-Trummer ◽  
Paul Colegrove ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document