Microstructure and wear performance enhancement of carbon nanotubes reinforced composite coatings fabricated by laser cladding on titanium alloy

2021 ◽  
Vol 139 ◽  
pp. 106957
Author(s):  
Zhiyun Ye ◽  
Jianing Li ◽  
Liqiang Liu ◽  
Fukun Ma ◽  
Bo Zhao ◽  
...  
2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


Applied laser ◽  
2014 ◽  
Vol 34 (5) ◽  
pp. 383-388
Author(s):  
相占凤 Xiang Zhanfeng ◽  
刘秀波 Liu Xiubo ◽  
罗健 Luo Jian ◽  
任佳 Ren Jia ◽  
石皋莲 Shi Gaolian ◽  
...  

2021 ◽  
Vol 47 (2) ◽  
pp. 2230-2243
Author(s):  
Ya'nan Liu ◽  
Lijun Yang ◽  
Xuejiao Yang ◽  
Tiangang Zhang ◽  
Ronglu Sun

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Guangyu Han ◽  
Youfeng Zhang

Abstract Composite coatings of TiB were successfully obtained on the surface of a Ti–6Al–4V alloy by in situ laser cladding technology using Ti/B/Nd2O3 powders. The microstructure and corrosion resistance of the fabricated composite coatings were investigated because relevant studies have been thus far limited in this field. The results indicate that the cladding coating and the substrate combined well via metallurgy after laser cladding treatment, and no obvious cracks were observed in the cladding coatings. The coatings comprise only the TiB and the α-Ti phase. The addition of Nd2O3 promoted the formation of a uniform and refined microstructure of the cladding coatings, and a well-defined structure was obtained when the added Nd2O3 content was 2 wt%. The microhardness of the cladding coating obviously improved by 3 to 4 fold above that of the Ti–6Al–4V substrate. Moreover, the corrosion properties significantly improved by adding Nd2O3 into the coatings. Electrical impedance spectroscopy and polarization tests showed that the best corrosion resistance of the cladding coating was achieved with the addition of 2 wt% Nd2O3. All samples revealed obvious near-capacitive behavior after immersion in a corrosive medium.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 392 ◽  
Author(s):  
Dongdong Ning ◽  
Ao Zhang ◽  
Hui Wu

Cu-carbon nanotubes (CNTs) composite coatings with high CNT content and uniformly distributed CNTs were successfully prepared via jet electrodeposition. Pristine CNTs, without any treatment like acid functionalization, were used. Anionic surfactant sodium dodecyl sulfate (SDS) was used to increase the wettability of the CNTs and improve the content of incorporated CNTs. With an appropriate SDS concentration (300 mg/L) in the electrolyte, the incorporated CNT content is as high as 2.84 wt %, much higher than the values reported using conventional electrodeposition (0.42–1.05 wt %). The high-content CNTs were uniformly distributed in the composite coating. The surface morphology of this composite coating (2.84 wt % CNTs) was flat due to the uniform electric field in jet electrodeposition. In the wear test a with load of 1 N and sliding speed of 0.02 m/s, the wear rate of this composite coating was 1.3 × 10−2 mg/Nm, 85.4% lower than that of pure Cu. The enhanced wear performance of Cu-CNTs composite coatings can be attributed to high CNT content and flat surface morphology.


Sign in / Sign up

Export Citation Format

Share Document