Ultrafast broadband reverse saturation absorption in Al-doped InSe thin films for optical limiting at visible/near-infrared

2020 ◽  
Vol 108 ◽  
pp. 110171 ◽  
Author(s):  
Xiaoyan Yan ◽  
Xingzhi Wu ◽  
Yu Fang ◽  
Wenjun Sun ◽  
Chengbao Yao ◽  
...  
2020 ◽  
Vol 1 ◽  
pp. 33-36
Author(s):  
Natalia Kamanina

Due to the effective use of the fullerenes and other nanoparticles in the materials for the general optoelectronic, laser and display technique, as well as for biomedicine, the different mechanisms to attenuate the light intensity are considered with good advantage in order to protect the human eyes and technical devises from high laser irradiation. Reverse saturation absorption, complex formation, scattering, etc. are taken into account. In the current paper the influence of the content of the nanoobjects on the interface relief is shown and considered as an additional possible optical limiting mechanism. Moreover, the diffraction from the nanostructured materials via high frequency Kerr effect is added to extend the numbers of the optical limiting mechanisms. Different experimental instruments and supporting models are presented. VIS lasers, AFM, OCA devises are applied to test and visualize the results. Theoretical and experimental data are in good coincidence.


2012 ◽  
Vol 34 (11) ◽  
pp. 1869-1877 ◽  
Author(s):  
Ahmad Tuhl ◽  
Hacene Manaa ◽  
Saad Makhseed ◽  
Nouria Al-Awadi ◽  
Jacob Mathew ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yiyue Zhang ◽  
Masoumeh Keshavarz ◽  
Elke Debroye ◽  
Eduard Fron ◽  
Miriam Candelaria Rodríguez González ◽  
...  

Abstract Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm−2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.


2012 ◽  
Vol 185 ◽  
pp. 60-64
Author(s):  
Min Min Zhu ◽  
Ze Hui Du ◽  
Jan Ma

(100)-oriented PLZT ((Pb1-x, Lax) (Zry,Ti1-y)1-x/4O3, x/y=9/65) films of up to ~ 1.23 μm have been developed on LaAlO3single crystal substrate by magnetron sputtering. The as-grown PLZT thin films exhibit high optical transparency in visible and near-infrared light wavelength and high quadratic (Kerr) EO coefficients. Prism coupler measurements reveal that the PLZT thin films possess large refractive index, as high as 2.524 in TE model and 2.481 in TM model. The transparency of >70% in the range of λ= 500-1200 nm, the optic band gap of 3.42 eV and the quadratic electro-optic (EO) coefficient of 3.38 x 10-17(m/V)2have been measured in the films. Due to the large EO coefficient and the micrometric thickness, the as-developed PLZT films have great potential in developing longitudinal-or transverse-type EO devices in electric and optic field


1989 ◽  
Vol 22 (2) ◽  
pp. 323-326 ◽  
Author(s):  
H Lengfellner ◽  
K F Renk ◽  
P Fickenscher ◽  
W Schindler

Sign in / Sign up

Export Citation Format

Share Document