scholarly journals Corundum (ruby) growth during the final assembly of the Archean North Atlantic Craton, southern West Greenland

2021 ◽  
pp. 104417
Author(s):  
Chris Yakymchuk ◽  
Vincent van Hinsberg ◽  
Christopher L. Kirkland ◽  
Kristoffer Szilas ◽  
Carson Kinney ◽  
...  
2020 ◽  
Vol 8 ◽  
Author(s):  
Adam Andreas Garde ◽  
Brian Frederick Windley ◽  
Thomas Find Kokfelt ◽  
Nynke Keulen

The 700 km-long North Atlantic Craton (NAC) in West Greenland is arguably the best exposed and most continuous section of Eo-to Neoarchaean crust on Earth. This allows a close and essential correlation between geochemical and isotopic data and primary, well-defined and well-studied geological relationships. The NAC is therefore an excellent and unsurpassed stage for the ongoing controversial discussion about uniformitarian versus non-uniformitarian crustal evolution in the Archaean. The latest research on the geochemistry, structural style, and Hf isotope geochemistry of tonalite-trondhjemite-granodiorite (TTG) complexes and their intercalated mafic to intermediate volcanic belts strongly supports previous conclusions that the NAC formed by modern-style plate tectonic processes with slab melting of wet basaltic oceanic crust in island arcs and active continental margins. New studies of the lateral tectonic convergence and collision between juvenile belts in the NAC corroborate this interpretation. Nevertheless, it has repeatedly been hypothesised that the Earth’s crust did not develop by modern-style, subhorizontal plate tectonics before 3.0 Ga, but by vertical processes such as crustal sinking and sagduction, and granitic diapirism with associated dome-and-keel structures. Many of these models are based on supposed inverted crustal density relations, with upper Archaean crust dominated by heavy mafic ridge-lavas and island arcs, and lower Archaean crust mostly consisting of felsic, supposedly buoyant TTGs. Some of them stem from older investigations of upper-crustal Archaean greenstone belts particularly in the Dharwar craton, the Slave and Superior provinces and the Barberton belt. These interpreted interactions between these upper and lower crustal rocks are based on the apparent down-dragged greenstone belts that wrap around diapiric granites. However, in the lower crustal section of the NAC, there is no evidence of any low-density granitic diapirs or heavy, downsagged or sagducted greenstone belts. Instead, the NAC contains well-exposed belts of upper crustal, arc-dominant greenstone belts imbricated and intercalated by well-defined thrusts with the protoliths of the now high-grade TTG gneisses, followed by crustal shortening mainly by folding. This shows us that the upper and lower Archaean crustal components did not interact by vertical diapirism, but by subhorizontal inter-thrusting and folding in an ambient, mainly convergent plate tectonic regime.


2016 ◽  
Vol 449 (1) ◽  
pp. 19-38 ◽  
Author(s):  
Kristoffer Szilas ◽  
Jonas Tusch ◽  
J. Elis Hoffmann ◽  
Adam A. Garde ◽  
Carsten Münker

2002 ◽  
Vol 39 (5) ◽  
pp. 665-686 ◽  
Author(s):  
Jeroen A.M van Gool ◽  
James N Connelly ◽  
Mogens Marker ◽  
Flemming C Mengel

The Nagssugtoqidian Orogen of West Greenland represents a belt of Palaeoproterozoic deformation and metamorphism between the North Atlantic Craton of South Greenland and a northern, lesser known continental segment that includes the Rinkian Orogen. First-order observations are interpreted to support a cycle of separation, convergence, and eventual collision of two continental masses. The emplacement of the Kangâmiut dyke swarm marked the onset of continental breakup at ca. 2040 Ma, and sedimentary basins formed between ca. 1950 and 1920 Ma. Subsequent convergence and consumption of an oceanic plate caused arc magmatism at 1920–1870 Ma. Granulite-facies peak metamorphism at 1860–1840 Ma in the centre of the orogen is related to crustal thickening by WNW-directed thrusting. Large-scale, upright folding with an east–west trend was ongoing by 1825 Ma. Sinistral strike-slip movement was concentrated along steeply dipping limbs of these large-scale folds and formed orogen-scale steep belts at ca. 1775 Ma. Close similarities between the northern and southern foreland suggest that the two cratons likely originated from one continuous continental block. Temporal and kinematic correlation of these events with adjoining orogens in Canada and Greenland shows close genetic links. The Nagssugtoqidian Orogen of West Greenland continues eastwards beneath the Greenland Ice cap to the Eastern Nagssugtoqidian belt of East Greenland (a.k.a. the Ammassalik belt). The Torngat Orogen of eastern Canada developed simultaneous with the Nagssugtoqidian Orogen with a kinematic compatibility suggesting that the two orogens formed on the west and north flanks, respectively, of a curved leading continental margin of an indenting North Atlantic Craton.


Sign in / Sign up

Export Citation Format

Share Document