scholarly journals SHRIMP U–Pb ages, mineralogy, and geochemistry of carbonatite–alkaline complexes of the Sillai Patti and Koga areas, NW Pakistan: Implications for petrogenesis and REE mineralization

2021 ◽  
pp. 104547
Author(s):  
Jun Hong ◽  
Tahseenullah Khan ◽  
Wenyuan Li ◽  
Yasir Shaheen Khalil ◽  
Asad Ali Narejo ◽  
...  

Author(s):  
Ole V. Petersen ◽  
Alexander P. Khomyakov ◽  
Henning Sørensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Petersen, O. V., Khomyakov, A. P., & Henning. (2001). Natrophosphate from the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 139-141. https://doi.org/10.34194/ggub.v190.5184 _______________ The rare mineral natrophosphate has been identified for the first time in the Ilímaussaq alkaline complex in a drill core from the Kvanefjeld area. It occurs sparsely in zoned veinlets with cores of natrophosphate and borders of fibrous trona. The natrophosphate is more or less smoky, transparent and unaltered. The refractive index n = 1.448 ± 0.005 is low compared to that given for the material from the type locality, Khibina alkaline complex, Kola Peninsula; the unit cell parameter a = 27.76 ± 0.05 Å is in excellent agreement with that given for the material from the type locality. The veins occur in hyper-agpaitic naujakasite lujavrite; villiaumite is an associated mineral. Only a few water-soluble minerals have so far been found in the Ilímaussaq alkaline complex compared to the wealth of such minerals in the Khibina and Lovozero alkaline complexes. This is possibly at least partly due to lack of necessary precautions during sampling.



2019 ◽  
Author(s):  
Jonathan Spiegel ◽  
◽  
Alexander U. Falster ◽  
William B. Simmons
Keyword(s):  




2016 ◽  
Vol 111 (1) ◽  
pp. 199-223 ◽  
Author(s):  
J. Trofanenko ◽  
A. E. Williams-Jones ◽  
G. J. Simandl ◽  
A. A. Migdisov


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 394 ◽  
Author(s):  
Seconde Ntiharirizwa ◽  
Philippe Boulvais ◽  
Marc Poujol ◽  
Yannick Branquet ◽  
Cesare Morelli ◽  
...  

The Gakara Rare Earth Elements (REE) deposit is one of the world’s highest grade REE deposits, likely linked to a carbonatitic magmatic-hydrothermal activity. It is located near Lake Tanganyika in Burundi, along the western branch of the East African Rift. Field observations suggest that the mineralized veins formed in the upper crust. Previous structures inherited from the Kibaran orogeny may have been reused during the mineralizing event. The paragenetic sequence and the geochronological data show that the Gakara mineralization occurred in successive stages in a continuous hydrothermal history. The primary mineralization in bastnaesite was followed by an alteration stage into monazite. The U-Th-Pb ages obtained on bastnaesite (602 ± 7 Ma) and on monazite (589 ± 8 Ma) belong to the Pan-African cycle. The emplacement of the Gakara REE mineralization most likely took place during a pre-collisional event in the Pan-African belt, probably in an extensional context.



1989 ◽  
Vol 26 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Brian F. Windley

The Grenvillian Orogeny was preceded by extensive anorogenic volcanism and plutonism in the period 1500–1300 Ma in the form of rhyolites, epizonal granites, anorthosites, gabbros, alkaline complexes, and basic dykes. An analogue for the mid-Proterozoic anorogenic complexes is provided by the 2000 km by 200 km belt of anorogenic complexes in the Hoggar, Niger, and Nigeria, which contain anorthosites, gabbros, and peralkaline granites and were generated in a Cambrian to Jurassic rift that farther south led to the formation of the South Atlantic. An analogue for the 1 × 106 km2 area of 1500–1350 Ma rhyolites (and associated epizonal granites) that underlie the mid-continental United States is provided by the 1.7 × 106 km2 area of Jurassic Tobifera rhyolites in Argentina, which were extruded on the stretched continental margin of South America immediately preceding the opening of the South Atlantic. The mid-Proterozoic complexes were intruded close to the continental margin of the Grenvillian ocean and were commonly superimposed by the craton-directed thrusts that characterized the final stages of the Grenvillian Orogeny. The bulk of the Keweenawan rift and associated anorogenic magmatism formed about 1100 Ma at the same time as the Ottawan Orogeny in Ontario, which probably resulted from the collision of the island arc of the Central Metasedimentary Belt attached to the continental block in the east with the continental block to the west. The most appropriate modern equivalent would be the Rhine Graben, which formed at the same time as the main Alpine compression.



2018 ◽  
Vol 54 (5) ◽  
pp. 701-718 ◽  
Author(s):  
Yan Liu ◽  
Anton R. Chakhmouradian ◽  
Zengqian Hou ◽  
Wenlei Song ◽  
Jindřich Kynický


Sign in / Sign up

Export Citation Format

Share Document