Anorogenic magmatism and the Grenvillian Orogeny

1989 ◽  
Vol 26 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Brian F. Windley

The Grenvillian Orogeny was preceded by extensive anorogenic volcanism and plutonism in the period 1500–1300 Ma in the form of rhyolites, epizonal granites, anorthosites, gabbros, alkaline complexes, and basic dykes. An analogue for the mid-Proterozoic anorogenic complexes is provided by the 2000 km by 200 km belt of anorogenic complexes in the Hoggar, Niger, and Nigeria, which contain anorthosites, gabbros, and peralkaline granites and were generated in a Cambrian to Jurassic rift that farther south led to the formation of the South Atlantic. An analogue for the 1 × 106 km2 area of 1500–1350 Ma rhyolites (and associated epizonal granites) that underlie the mid-continental United States is provided by the 1.7 × 106 km2 area of Jurassic Tobifera rhyolites in Argentina, which were extruded on the stretched continental margin of South America immediately preceding the opening of the South Atlantic. The mid-Proterozoic complexes were intruded close to the continental margin of the Grenvillian ocean and were commonly superimposed by the craton-directed thrusts that characterized the final stages of the Grenvillian Orogeny. The bulk of the Keweenawan rift and associated anorogenic magmatism formed about 1100 Ma at the same time as the Ottawan Orogeny in Ontario, which probably resulted from the collision of the island arc of the Central Metasedimentary Belt attached to the continental block in the east with the continental block to the west. The most appropriate modern equivalent would be the Rhine Graben, which formed at the same time as the main Alpine compression.

2020 ◽  
Vol 221 (1) ◽  
pp. 178-204 ◽  
Author(s):  
N L Celli ◽  
S Lebedev ◽  
A J Schaeffer ◽  
M Ravenna ◽  
C Gaina

SUMMARY We present a tomographic model of the crust, upper mantle and transition zone beneath the South Atlantic, South America and Africa. Taking advantage of the recent growth in broadband data sampling, we compute the model using waveform fits of over 1.2 million vertical-component seismograms, obtained with the automated multimode inversion of surface, S and multiple S waves. Each waveform provides a set of linear equations constraining perturbations with respect to a 3-D reference model within an approximate sensitivity volume. We then combine all equations into a large linear system and solve it for a 3-D model of S- and P-wave speeds and azimuthal anisotropy within the crust, upper mantle and uppermost lower mantle. In South America and Africa, our new model SA2019 reveals detailed structure of the lithosphere, with structure of the cratons within the continents much more complex than seen previously. In South America, lower seismic velocities underneath the transbrasilian lineament (TBL) separate the high-velocity anomalies beneath the Amazon Craton from those beneath the São Francisco and Paraná Cratons. We image the buried portions of the Amazon Craton, the thick cratonic lithosphere of the Paraná and Parnaíba Basins and an apparently cratonic block wedged between western Guyana and the slab to the west of it, unexposed at the surface. Thick cratonic lithosphere is absent under the Archean crust of the São Luis, Luis Álves and Rio de La Plata Cratons, next to the continental margin. The Guyana Highlands are underlain by low velocities, indicating hot asthenosphere. In the transition zone, we map the subduction of the Nazca Plate and the Chile Rise under Patagonia. Cratonic lithosphere beneath Africa is more fragmented than seen previously, with separate cratonic units observed within the West African and Congo Cratons, and with cratonic lithosphere absent beneath large portions of Archean crust. We image the lateral extent of the Niassa Craton, hypothesized previously and identify a new unit, the Cubango Craton, near the southeast boundary of the grater Congo Craton, with both of these smaller cratons unexposed at the surface. In the South Atlantic, the model reveals the patterns of interaction between the Mid-Atlantic Ridge (MAR) and the nearby hotspots. Low-velocity anomalies beneath major hotspots extend substantially deeper than those beneath the MAR. The Vema Hotspot, in particular, displays a pronounced low-velocity anomaly under the thick, high-velocity lithosphere of the Cape Basin. A strong low velocity anomaly also underlies the Cameroon Volcanic Line and its offshore extension, between Africa and the MAR. Subtracting the global, age-dependent VS averages from those in the South Atlantic Basins, we observe areas where the cooling lithosphere is locally hotter than average, corresponding to the location of the Tristan da Cunha, Vema and Trindade hotspots. Beneath the anomalously deep Argentine Basin, we image unusually thick, high-velocity lithosphere, which suggests that its anomalously great depth can be explained, at least to a large extent, by isostatic, negative lithospheric buoyancy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Aiham Albaeni ◽  
May A. Beydoun ◽  
Shaker M. Eid ◽  
Bolanle Akinyele ◽  
Lekshminarayan RaghavaKurup ◽  
...  

Background: Regional Differences in health outcomes following OHCA has been poorly studied, and was the focus of this investigation. Methods: We used the 2002 to 2012 Nationwide Inpatient Sample database to identify adults ≥ 18 years old, with an ICD-9 code principal diagnosis of cardio respiratory arrest (427.5) or ventricular fibrillation (427.1). Trauma patients were excluded. In 4 predefined federal geographic regions: North East, Midwest, South and West, means and proportions of total hospital charges (adjusted to the 2012 consumer price index,) and mortality rate were calculated. Multiple linear and logistic regression models, were adjusted for patient demographics, hospital characteristics and Charlson Comorbidity Index. Trends in binary outcome were examined with YearхRegion interaction terms. Results: From 2002 to 2012, of 155,592 OHCA patients who survived to hospital admission , 26,007 (16.7%) were in the Northeast, 39,921 (25.7% ) in the Midwest, 56,263 (36.2%) in the South, and 33,401 (21.5% ) in the West. Total hospital charges (THC) rose significantly over the years across all regions of the United States ( P trend <0.0001), and were higher in the West Vs the North East (THC>$109,000/admission, AOR 1.85; 95% CI 1.53-2.24, p<0.0001), and not different in other regions. Compared to the Northeast, mortality was lower in the Midwest ( AOR 0.86, 95% CI 0.77-0.97 p=0.01), marginally lower in the South ( AOR 0.91, 95% CI 0.82-1.01 p=0.07), with no difference detected between the West and the Northeast ( AOR 1.02, 95% CI 0.90-1.16 P=0.78). Increased expenditure was not rewarded by an increase in survival, as trends in Mortality did not differ significantly between regions (YearхRegion effects P>0.05, P trend =0.29). Conclusions: Nationwide, there is a considerable variability in survival and charges associated with caring for the post arrest patient. Higher charges did not yield better outcomes. Further investigation is needed to optimize health care delivery.


2008 ◽  
Vol 26 (11) ◽  
pp. 3457-3476 ◽  
Author(s):  
A. S. Taschetto ◽  
I. Wainer

Abstract. The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Niño – Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.


2011 ◽  
Vol 24 (14) ◽  
pp. 3753-3763 ◽  
Author(s):  
Thomas M. Rickenbach ◽  
Rosana Nieto-Ferreira ◽  
Richard P. Barnhill ◽  
Stephen W. Nesbitt

Abstract In this study, a 10-yr (1998–2007) climatology of observations from the Tropical Rainfall Measuring Mission (TRMM) satellite is used to study regional mechanisms of monsoon onset across tropical and subtropical South America. The approach is to contrast regional differences in the structure, intensity, and rainfall of mesoscale convective systems (MCSs) prior to and after onset, in the context of thermodynamic conditions from the National Centers for Environmental Prediction (NCEP) reanalysis data. This is accomplished by analyzing the mean annual cycle time series, 10-yr frequency histograms, and 3-month-averaged values prior to and following onset in four regions of distinct rainfall variability. Observed MCS metrics and NCEP variables include lightning flash rate, convective rain fraction, height of the 30-dBZ isosurface, minimum 85-GHz polarization corrected temperature, and the fluxes of sensible and latent heat. The west-central Amazon region had a distinct maximum of MCS intensity 2 months prior to the monsoon onset date of each region, which was well correlated with surface sensible heat flux, despite the observation that thermodynamic instability was greatest after onset. At the mouth of the Amazon, the dry season rainfall minimum, the premonsoon maximum in MCS intensity metrics, and monsoon onset were all delayed by 2–3 months relative to the west-central Amazon. This delay in the annual cycle and comparatively large difference in pre- versus postonset MCSs, combined with previous work, suggest that the slow migration of the Atlantic Ocean intertropical convergence zone controls onset characteristics at the mouth of the Amazon. All metrics of convective intensity in the tropical regions decreased significantly following onset. These results, in the context of previous studies, are consistent with the hypothesis that thermodynamic, land surface, and aerosol controls on MCS intensity operate in concert with each other to control the evolution of precipitation system structure from the dry season to the wet season. The other two regions [the South Atlantic convergence zone (SACZ) and the south], associated with the well-documented dipole of intraseasonal rain variability, have a weaker and more variable annual cycle of all MCS metrics. This is likely related to the strong influence of baroclinic circulations and frontal systems in those regions. In the south, fewer but larger and more electrified MCSs prior to onset transition to more, smaller, and less electrified MCSs after onset, consistent with previous climatologies of strong springtime mesoscale convective complexes in that region.


2019 ◽  
Vol 512 ◽  
pp. 124-133
Author(s):  
Gelvam A. Hartmann ◽  
Wilbor Poletti ◽  
Ricardo I.F. Trindade ◽  
Lucio M. Ferreira ◽  
Pedro L.M. Sanches

Zootaxa ◽  
2012 ◽  
Vol 3425 (1) ◽  
pp. 1 ◽  
Author(s):  
MARC ELÉAUME ◽  
JENS-MICHAEL BOHN ◽  
MICHEL ROUX ◽  
NADIA AMÉZIANE

During the last decades, R/V Meteor and R/V Polarstern deep-sea investigations in the south Atlantic and neighbouringSouthern Ocean collected new samples of stalked crinoids belonging to the families Bathycrinidae, Phrynocrinidae andHyocrinidae which are herein described. The species found are Bathycrinus australis A.H. Clark, 1907b (the most abun-dant), Dumetocrinus aff. antarcticus (Bather, 1908), Hyocrinus bethellianus Thomson, 1876, Feracrinus heinzelleri newspecies, and Porphyrocrinus cf. incrassatus (Gislén, 1933). As only stalk fragments of bathycrinids were frequently col-lected, a distinction between the two Atlantic species B. australis and B. aldrichianus is proposed using characters of co-lumnal articulations. A few specimens attributed to Porphyrocrinus cf. incrassatus, Hyocrinus bethellianus and Hyocrinussp. collected by the N/O Jean Charcot on the Walvis Ridge are also described, plus a new specimen of Porphyrocrinusincrassatus collected in the central mid-Atlantic. Biogeography and close affinities between species in the genera Bathy-crinus and Porphyrocrinus suggest an Antarctic origin of some stalked crinoids among the north Atlantic deep-sea fauna.The presence of B. australis in both the Angola and Cape basins suggests that the Walvis Ridge is not a bio-geographicalbarrier for this relatively eurybathic species, which can attach to hard substrates as well as anchor in sediment. The genusDumetocrinus seems to be an example of colonization of the west Antarctic platform from deeper environment where its ancestor lived.


Polar Record ◽  
1963 ◽  
Vol 11 (73) ◽  
pp. 394-405 ◽  
Author(s):  
M. W. Holdgate

The South Sandwich Islands lie between lats. 56° 18′ S. and 59° 28′ S., and between longs. 26° 14′ W., and 28° 11′ W. There are eleven islands, of which ten form a curved chain stretching north and south while the eleventh, Leskov Island, lies to the west of the group near its northern end. The group is the only typical volcanic island arc in the Antarctic region and forms the easternmost section of the Scotia Arc; to the east it is bounded by the associated deep South Sandwich Trench.


Sign in / Sign up

Export Citation Format

Share Document