Influence of host matrix on thermally-activated delayed fluorescence: Effects on emission lifetime, photoluminescence quantum yield, and device performance

2014 ◽  
Vol 15 (9) ◽  
pp. 2027-2037 ◽  
Author(s):  
Gábor Méhes ◽  
Kenichi Goushi ◽  
William J. Potscavage ◽  
Chihaya Adachi
Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3934 ◽  
Author(s):  
Sarah Keller ◽  
Matthias Bantle ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

Heteroleptic [Cu(BIPHEP)(N^N)][PF6] complexes (BIPHEP = 1,1′-biphenyl-2,2′-diylbis(diphenylphosphane)), in which N^N is 2,2′-bipyridine (bpy), 6-methyl-2,2′-bipyridine (6-Mebpy), 6-ethyl-2,2′-bipyridine (6-Etbpy), or 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bpy), have been synthesized and characterized using multinuclear NMR spectroscopies and electrospray ionization mass spectrometry. The single crystal structures of [Cu(BIPHEP)(bpy)][PF6]∙CH2Cl2, [Cu(BIPHEP)(5,5′-Me2bpy)][PF6]∙CH2Cl2, [Cu(BIPHEP)(6-Mebpy)][PF6]∙Et2O∙0.5H2O and [Cu(BIPHEP)(6-Etbpy)][PF6] confirm distorted tetrahedral {Cu(P^P)(N^N)} coordination environments. Each compound shows a quasi-reversible Cu+/Cu2+ process. In deaerated solution, the compounds are weak emitters. Powdered samples are yellow emitters (λemmax in the range 558–583 nm) and [Cu(BIPHEP)(5,5′-Me2bpy)][PF6] exhibits the highest photoluminescence quantum yield (PLQY = 14%). On cooling to 77 K (frozen 2-methyloxolane), the emission maxima are red-shifted and the excited state lifetimes increase from τ1/2 < 8 μs, to τ1/2 values of up to 53 μs, consistent with the compounds with N^N = 6-Mebpy, 6-Etbpy and 5,5′-Me2bpy exhibiting thermally activated delayed fluorescence (TADF).


Author(s):  
Dong Jin Shin ◽  
Jun Seop Lim ◽  
Jun Yeob Lee

A thermally activated delayed fluorescence (TADF) molecule with high reverse intersystem crossing rate accompanied by high photoluminescence quantum yield was developed by combinatorial donor engineering of bicarbazole and 12H-benzofuro[3,2-a]carbazole. The...


2021 ◽  
Author(s):  
Stephanie Montanaro ◽  
Piotr Pander ◽  
Mark Elsegood ◽  
Simon Teat ◽  
Andrew Bond ◽  
...  

A fundamental problem facing thermally activated delayed fluorescence (TADF) is to overcome the paradox of efficient electronic transitions and a narrow singlet-triplet energy gap (ΔEST) in a single luminophore. We present a quinoxaline-based TADF iptycene as the first clear example that homoconjugation can be harnessed as a viable design strategy toward this objective. Homoconjugation was introduced in an established TADF luminophore by trimerization through an iptycene core. This homoconjugation was confirmed by electrochemistry. As a direct consequence of homoconjugation we observed synergistic improvements to photoluminescence quantum yield (ΦPL), radiative rate of singlet decay (krS), delayed fluorescence lifetime (τTADF), and rate of reverse intersystem crossing (krISC), while narrowing the ΔEST. The cooperative enhancement is rationalised with TD-DFT calculations including spin-orbit coupling (SOC). A facile synthesis of this system, and the ubiquity of the pyrazine motif in state-of-the-art TADF materials across the electromagnetic spectrum, leads to a great potential for generality.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42897-42902
Author(s):  
Chan Hee Lee ◽  
Shin Hyung Choi ◽  
Sung Joon Oh ◽  
Jun Hyeon Lee ◽  
Jae Won Shim ◽  
...  

The linear D–A–D type of molecular structure of AcPYM and PxPYM enhances the horizontally oriented alignment and up to 87% of the horizontal transition dipole moments in the host matrix is realized.


2019 ◽  
Vol 7 (32) ◽  
pp. 9850-9855 ◽  
Author(s):  
Mingming Zhang ◽  
Liang Chen ◽  
Xiushang Xu ◽  
Lei Zhao ◽  
Shumeng Wang ◽  
...  

A series of phosphine oxide based dendritic hosts have been developed. Compare with conventional dendritic host H2, the new hosts not only maintain high T1 but also have a small ΔEST and bring higher device performance.


2020 ◽  
Author(s):  
Andrew T. Turley ◽  
Andrew Danos ◽  
Antonio Prlj ◽  
Andrew P. Monkman ◽  
Basile F.E. Curchod ◽  
...  

Charge transfer in organic fluorophores is a fundamental photophysical process that can be either beneficial, e.g., facilitating thermally activated delayed fluorescence, or detrimetnal, e.g., mediating emission quenching. <i>N</i>-Alkylation is shown to provide straightforward synthetic control of the charge transfer, emission energy and quantum yield of amine chromophores. We demonstrate this concept using quinine as a model. <i>N</i>-Alkylation causes changes in its emission that mirror those caused by changes in pH (i.e., protonation). Unlike protonation, however, alkylation of quinine’s two N sites is performed in a stepwise manner to give kinetically stable species. This kinetic stability allows us to isolate and characterize an <i>N</i>-alkylated analog of an ‘unnatural’ protonation state that is quaternized selectively at the less basic site, which is inaccessible using acid. These materials expose (i) the through-space charge-transfer excited state of quinine and (ii) the associated loss pathway, while (iii) developing a simple salt that outperforms quinine sulfate as a quantum yield standard. This <i>N</i>-alkylation approach can be applied broadly in the discovery of emissive materials by tuning charge-transfer states.


2018 ◽  
Vol 6 (20) ◽  
pp. 5536-5541 ◽  
Author(s):  
Yun Li ◽  
Jiao-Jiao Liang ◽  
Hong-Cheng Li ◽  
Lin-Song Cui ◽  
Man-Keung Fung ◽  
...  

The fluorination on the π-bridge can obviously affect the photophysical behavior of the emitters and thus improve the device performance.


Sign in / Sign up

Export Citation Format

Share Document