Fluvial response to climate change inferred from sediment cores from the Ghaggar–Hakra paleochannel in NW Indo–Gangetic plains

2019 ◽  
Vol 532 ◽  
pp. 109247 ◽  
Author(s):  
Ajit Singh ◽  
Rajiv Sinha
Author(s):  
Lonnie G. Thompson ◽  
Alan L. Kolata

Climate is a fundamental and independent variable of human existence. Given that 50 percent of the Earth’s surface and much of its population exist between 30oN and 30oS, paleoenvironmental research in the Earth’s tropical regions is vital to our understanding of the world’s current and past climate change. Most of the solar energy that drives the climate system is absorbed in these regions. Paleoclimate records reveal that tropical processes, such as variations in the El Niño-Southern Oscillation (ENSO), have affected the climate over much of the planet. Climatic variations, particularly in precipitation and temperature, play a critical role in the adaptations of agrarian cultures located in zones of environmental sensitivity, such as those of the coastal deserts, highlands, and altiplano of the Andean region. Paleoclimate records from the Quelccaya ice cap (5670 masl) in highland Peru that extend back ~1800 years show good correlation between precipitation and the rise and fall of pre-Hispanic civilizations in western Peru and Bolivia. Sediment cores extracted from Lake Titicaca provide independent evidence of this correspondence with particular reference to the history of the pre-Hispanic Tiwanaku state centered in the Andean altiplano. Here we explore, in particular, the impacts of climate change on the development and ultimate dissolution of this altiplano state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia Ribeiro ◽  
Audrey Limoges ◽  
Guillaume Massé ◽  
Kasper L. Johansen ◽  
William Colgan ◽  
...  

AbstractHigh Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.


2021 ◽  
Author(s):  
Barbara von Hippel ◽  
Kathleen R. Stoof-Leichsenring ◽  
Luise Schulte ◽  
Peter Seeber ◽  
Laura S. Epp ◽  
...  

<p>Climate change has a great impact on boreal ecosystems including Siberian larch forests. As a consequence of warming, larch grow is possible in areas where climate used to be too cold, leading to a shift of the tree line into more arctic regions. Most plants co-exist in symbiosis with heterotrophic organisms surrounding their root system. In arctic ecosystems, mycorrhizal fungi are a prerequisite for plant establishment and survival because they support nutrient uptake from nutrient-poor soils and maintain the water supply. Until now, however, knowledge about the co-variation of vegetation and fungi is poor. Certainly, the understanding of dynamic changes in biotic interactions is important to understand adaptation mechanisms of ecosystems to climate change.</p><p>We investigated sedimentary ancient DNA from Lake Levinson Lessing, Taymyr Peninsula (Arctic Siberia, tundra), Lake Lama, Lake Kyutyunda (both northern Siberia, tundra-taiga transition zone) and Lake Bolshoe Toko (southern Siberia, forest area) covering the last about 45.000 years using ITS primers for fungi along with the chloroplast P6 loop marker for vegetation metabarcoding. We found changes in the fungal communities that are in broad agreement with vegetation turnover. To our knowledge, this is the first broad ecological study on lake sediment cores to analyze fungal biodiversity in relation to vegetation change on millennial time scales.</p>


2021 ◽  
Author(s):  
Dipti Hingmire ◽  
Ramesh Vellore ◽  
R. Krishnan ◽  
Manmeet Singh ◽  
A. Metya ◽  
...  

2007 ◽  
Vol 202 (1-2) ◽  
pp. 193-210 ◽  
Author(s):  
C. Gao ◽  
S. Boreham ◽  
R.C. Preece ◽  
P.L. Gibbard ◽  
R.M. Briant

2018 ◽  
Vol 135 (1-2) ◽  
pp. 279-292 ◽  
Author(s):  
Ram Ratan Verma ◽  
Tapendra Kumar Srivastava ◽  
Pushpa Singh

Quaternary ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 11 ◽  
Author(s):  
Sien Thys ◽  
Maarten Van Daele ◽  
Nore Praet ◽  
Britta Jensen ◽  
Thomas Van Dyck ◽  
...  

Snow avalanches cause many fatalities every year and damage local economies worldwide. The present-day climate change affects the snowpack and, thus, the properties and frequency of snow avalanches. Reconstructing snow avalanche records can help us understand past variations in avalanche frequency and their relationship to climate change. Previous avalanche records have primarily been reconstructed using dendrochronology. Here, we investigate the potential of lake sediments to record snow avalanches by studying 27 < 30-cm-long sediment cores from Kenai Lake, south-central Alaska. We use X-ray computed tomography (CT) to image post-1964 varves and to identify dropstones. We use two newly identified cryptotephras to update the existing varve chronology. Satellite imagery is used to understand the redistribution of sediments by ice floes over the lake, which helps to explain why some avalanches are not recorded. Finally, we compare the dropstone record with climate data to show that snow avalanche activity is related to high amounts of snowfall in periods of relatively warm or variable temperature conditions. We show, for the first time, a direct link between historical snow avalanches and dropstones preserved in lake sediments. Although the lacustrine varve record does not allow for the development of a complete annual reconstruction of the snow avalanche history in the Kenai Lake valley, our results suggest that it can be used for long-term decadal reconstructions of the snow-avalanche history, ideally in combination with similar records from lakes elsewhere in the region.


2020 ◽  
Author(s):  
Inger Alsos ◽  

&lt;p&gt;Arctic and alpine species are disproportionally affected by climate change, and knowledge about their ability to survive or disperse is essential for their long-term conservation. Ancient sedimentary DNA (sedaDNA) has improved as a proxy for reconstructing past floras, and may now be applied in high throughput analyses. Our lab has analysed, or is in the process of analysing, sedaDNA from ~40 long (up to 26 000 years old) and 11 short (0-1000 years old) lake sediment cores from the Europe (Alps, Norway, Svalbard, Iceland, Polar Urals). Both general and site-specific patterns have emerged from these data. For example, the taxa recorded in sedaDNA often indicate a warmer climate than that which has been inferred based on pollen records; this is in concordance with macrofossil evidence. Also, the limits of past northern tree lines may have been underestimated based on pollen studies. Some heathland species, such as Vaccinium spp. and Empetrum, often show a time lag in arrival compared with other species with similar climatic requirements. Thus, despite the fact that they have berries and therefore are well adapted to long-distance dispersal by birds, our data show they are constrained from rapid responses to climate changes. Other patterns are site-specific. For example, we see a stepwise doubling of floristic richness from the Last Glacial Maximum to the Holocene in the Polar Urals, which is barely detectable in the pollen analyses. Further, the majority of taxa with a mainly arctic-alpine distributions survived the early-Holocene climate warming, when shrub and trees entered the region, probably due to a very heterogeneous landscape that allows co-existence of species with different requirements. In contrast, arctic-alpine taxa disappear from the catchment a subset of the lakes studied in North Norway after shrub and forest expansion. Linking this type of information to characteristics of these biogeographic regions may provide useful when planning for future nature reserves. In the near future, the combination of many sites, complete DNA reference libraries, and emerging molecular methods will allow for the tracking of individual species through time and space.&lt;/p&gt;


2007 ◽  
Vol 67 (2) ◽  
pp. 292-296 ◽  
Author(s):  
Brian Lutz ◽  
Gregory Wiles ◽  
Thomas Lowell ◽  
Joshua Michaels

AbstractMany Northern Hemisphere paleoclimatic records, including ice cores, speleothems, lake sediments, ocean cores and glacier chronologies, indicate an abrupt cooling event about 8200 cal yr BP. A new well-dated series of sediment cores taken from Brown's Lake, a kettle in Northeast Ohio, shows two closely spaced intervals of loess deposition during this time period. The source of loess is uncertain; however, it is likely from an abandoned drainage and former glacial lake basin located to the north of the stagnant ice topography that gave rise to the kettle lake. Strong visual stratigraphy, loss on ignition data and sediment grain size analyses dated with 3 AMS radiocarbon dates place the two intervals of loess deposition between 8950 and 8005 cal yr BP. The possibility of a two-phase abrupt climate change at this time is a finding that has been suggested in other research. This record adds detail to the spatial extent and timing as well as possible structure of the 8.2-ka abrupt climate change event.


Sign in / Sign up

Export Citation Format

Share Document