scholarly journals Deglacial to Holocene environmental changes in the northern Ligurian Sea: The dual influence of regional climate variability and large-scale intermediate Mediterranean circulation

Author(s):  
Sandrine Le Houedec ◽  
Meryem Mojtahid ◽  
Maria Ciobanu ◽  
Stephan J. Jorry ◽  
Fatima Zohra Bouhdayad ◽  
...  
2020 ◽  
Author(s):  
Marie Harbott ◽  
Henry C. Wu ◽  
Henning Kuhnert ◽  
Simone A. Kasemann ◽  
Carlos Jimenez ◽  
...  

<p>Ocean warming and ocean acidification (OA) are increasingly influencing marine life. Parts of the increasing amount of CO<sub>2</sub> in the atmosphere will eventually get absorbed by the ocean, which changes the oceans carbonate chemistry and threatens the ecological competitiveness of calcareous marine organisms. Currently,  the global coverage of studies on the development of pH since preindustrial times is sparse. An important region to study environmental and climate variations is the northwestern coastal part of Cuba where the Loop Current (LC) joins the Florida Current and contributes to the Gulf Stream. The tropical Atlantic is a primary region for the formation of warm surface water of the thermohaline ocean circulation and the Caribbean in particular as a habitat for coral reefs in the Atlantic making them susceptible to changes in water temperatures and carbonate chemistry. This provides a unique chance to study multiple aspects of the implications of anthropogenic activities such as changes in SST, ocean pH, and carbonate chemistry using the coral skeletal geochemistry as an archive of climate and environmental changes. Here we present results from a multi-proxy approach for the reconstruction of environmental change and natural climate variability from a North Cuban Siderastrea siderea coral. The sub-seasonally resolved records indicate interannual to decadal changes in SST and seawater carbonate chemistry since 1830 CE. The comparison with pH will provide clues on whether the regional climate variability has been directly affected by atmospheric CO<sub>2</sub> forcing.</p>


2009 ◽  
Vol 48 (8) ◽  
pp. 1527-1541 ◽  
Author(s):  
John T. Abatzoglou ◽  
Kelly T. Redmond ◽  
Laura M. Edwards

Abstract A novel approach is presented to objectively identify regional patterns of climate variability within the state of California using principal component analysis on monthly precipitation and temperature data from a network of 195 climate stations statewide and an ancillary gridded database. The confluence of large-scale circulation patterns and the complex geography of the state result in 11 regional modes of climate variability within the state. A comparison between the station and gridded analyses reveals that finescale spatial resolution is needed to adequately capture regional modes in complex orographic and coastal settings. Objectively identified regions can be employed not only in tracking regional climate signatures, but also in improving the understanding of mechanisms behind regional climate variability and climate change. The analysis has been incorporated into an operational tool called the California Climate Tracker.


2021 ◽  
Vol 9 ◽  
Author(s):  
Robert Patalano ◽  
Rebecca Hamilton ◽  
Emma Finestone ◽  
Noel Amano ◽  
Phoebe Heddell-Stevens ◽  
...  

Climate variability and hominin evolution are inextricably linked. Yet, hypotheses examining the impact of large-scale climate shifts on hominin landscape ecology are often constrained by proxy data coming from off-site lake and ocean cores and temporal offsets between paleoenvironmental and archaeological records. Additionally, landscape response data (most commonly, records of vegetation change), are often used as a climate proxy. This is problematic as it assumes that vegetation change signifies global or regional climate shifts without accounting for the known non-linear behavior of ecological systems and the often-significant spatial heterogeneity in habitat structure and response. The exploitation of diverse, rapidly changing habitats by Homo by at least two million years ago highlights that the ability to adapt to landscapes in flux had emerged by the time of our genus’ African origin. To understand ecosystem response to climate variability, and hominin adaptations to environmental complexity and ecological diversity, we need cross-disciplinary datasets in direct association with stratified archaeological and fossil assemblages at a variety of temporal and spatial scales. In this article, we propose a microhabitat variability framework for understanding Homo’s adaptability to fluctuating climates, environments, and resource bases. We argue that the exploitation of microhabitats, or unique ecologically and geographically defined areas within larger habitats and ecoregions, was a key skill that allowed Homo to adapt to multiple climates zones and ecoregions within and beyond Africa throughout the Pleistocene.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Christopher H. O’Reilly ◽  
Daniel J. Befort ◽  
Antje Weisheimer ◽  
Tim Woollings ◽  
Andrew Ballinger ◽  
...  

AbstractInternal climate variability will play a major role in determining change on regional scales under global warming. In the extratropics, large-scale atmospheric circulation is responsible for much of observed regional climate variability, from seasonal to multidecadal timescales. However, the extratropical circulation variability on multidecadal timescales is systematically weaker in coupled climate models. Here we show that projections of future extratropical climate from coupled model simulations significantly underestimate the projected uncertainty range originating from large-scale atmospheric circulation variability. Using observational datasets and large ensembles of coupled climate models, we produce synthetic ensemble projections constrained to have variability consistent with the large-scale atmospheric circulation in observations. Compared to the raw model projections, the synthetic observationally-constrained projections exhibit an increased uncertainty in projected 21st century temperature and precipitation changes across much of the Northern extratropics. This increased uncertainty is also associated with an increase of the projected occurrence of future extreme seasons.


2012 ◽  
Vol 40 (5-6) ◽  
pp. 1141-1168 ◽  
Author(s):  
Damien Boulard ◽  
Benjamin Pohl ◽  
Julien Crétat ◽  
Nicolas Vigaud ◽  
Thanh Pham-Xuan

2020 ◽  
Vol 33 (7) ◽  
pp. 2891-2905
Author(s):  
Kwesi A. Quagraine ◽  
Bruce Hewitson ◽  
Christopher Jack ◽  
Piotr Wolski ◽  
Izidine Pinto ◽  
...  

AbstractAs established in earlier research, analysis of the combined roles (co-behavior) of multiple climate processes provides useful insights into the drivers of regional climate variability, especially for regions with no singular large-scale circulation control. Here, we extend the previous study in order to examine the performance of eight models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) in representing co-behavior influence on surface expressions over southern Africa. We find that although models broadly simulate observed precipitation responses over southern Africa, they fail to produce statistically strong response signals for an important drought pattern (El Niño co-behaving with positive Antarctic Oscillation during summer) for the region. We also demonstrate that the models show statistically strong temperature response signals to co-behavior that agree well with observed responses over the region. The multimodel ensemble mean although consistent with observations shows a larger spread. By elucidating the performance of models in representing observed co-behavior of climate processes, we are able to evaluate models while establishing important information for understanding of climate variability.


Author(s):  
Elena García‐Bustamante ◽  
J. Fidel Fidel González‐Rouco ◽  
Elena García‐Lozano ◽  
Fernando Martinez‐Peña ◽  
Jorge Navarro

Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


Sign in / Sign up

Export Citation Format

Share Document