Emission of organic carbon, elemental carbon and water-soluble ions from crop straw burning under flaming and smoldering conditions

Particuology ◽  
2017 ◽  
Vol 31 ◽  
pp. 181-190 ◽  
Author(s):  
Lei Hong ◽  
Gang Liu ◽  
Limin Zhou ◽  
Jiuhai Li ◽  
Hui Xu ◽  
...  
Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 397 ◽  
Author(s):  
Zhengxu Gao ◽  
Xiaoling Wang ◽  
Lijuan Shen ◽  
Hua Xiang ◽  
Honglei Wang

As the new core region of the haze pollution, the terrain effect of sub-basin and water networks over the Twin-Hu Basin (THB) in the Yangtze River Middle-Reach (YRMR) had great impacts on the variations and distributions of air pollutants. In this study, trace gases (NH3, HNO3, and HCl), water-soluble ions (WSIs), organic carbon (OC), and elemental carbon (EC) were measured in PM2.5 from 9 January to 27 January 2018, in Wuhan using monitoring for aerosols and gases (MARGA) and a semi-continuous OC/EC analyzer (Model RT-4). The characteristics of air pollutants during a haze episode were discussed, and the PM2.5 sources were quantitatively analyzed on haze and non-haze days using the principal component analysis/absolute principal component scores (PCA/APCS) model. The average PM2.5 concentration was 122.61 μg·m−3 on haze days, which was 2.20 times greater than it was on non-haze days. The concentrations of secondary water soluble ions (WSIs) including NO3−, SO42−, and NH4+ increased sharply on haze days, which accounted for 91.61% of the total WSIs and were 2.43 times larger than the values on non-haze days. The heterogeneous oxidation reactions of NO2 and SO2 during haze episodes were proven to be the major sources of sulfate and nitrate in PM2.5. On haze days, the concentrations of EC, primary organic carbon (POC), and secondary organic carbon (SOC) were 1.68, 1.69, and 1.34 times larger than those on non-haze days, the CO, HNO3, and NH3 concentrations enhanced and relatively low SO2, O3, and HNO2 levels were observed on haze days. The diurnal variations of different pollutants distinctly varied on haze days. The PM2.5 in Wuhan primarily originated from the secondary formation, combustion, dust, industry, and vehicle exhaust sources. The source contributions of the secondary formation + combustion sources to PM2.5 on haze days were 2.79 times larger than the level on non-haze days. The contribution of the vehicle exhaust + combustion source on haze days were 0.59 times the value on non-haze days. This description is supported by a summary of how pollutant concentrations and patterns vary in the THB compared to the variations in other pollution regions in China, which have been more completely described.


2010 ◽  
Vol 3 (4) ◽  
pp. 1063-1074 ◽  
Author(s):  
H. Timonen ◽  
M. Aurela ◽  
S. Carbone ◽  
K. Saarnio ◽  
S. Saarikoski ◽  
...  

Abstract. A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009. The data of the PILS-TOC-IC setup was compared with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 μg m−3 (on average 1.5 μg m−3). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinuous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r = 0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. WSPOM and oxalate produced in biomass burning were clearly correlated with carbon monoxide.


2016 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Yoshika Sekine ◽  
◽  
Nami Takahashi ◽  
Yuri Ohkoshi ◽  
Akihiro Takemasa ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 456
Author(s):  
Huimin Jiang ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Xi Zhou ◽  
Fanglong Wang ◽  
...  

We investigated water-soluble ions (WSIs) of aerosol samples collected from 2016 to 2017 in Lanzhou, a typical semi-arid and chemical-industrialized city in Northwest China. WSIs concentration was higher in the heating period (35.68 ± 19.17 μg/m3) and lower in the non-heating period (12.45 ± 4.21 μg/m3). NO3−, SO42−, NH4+ and Ca2+ were dominant WSIs. The concentration of SO42− has decreased in recent years, while the NO3− level was increasing. WSIs concentration was affected by meteorological factors. The sulfur oxidation and nitrogen oxidation ratios (SOR and NOR) exceeded 0.1, inferring the vital contribution of secondary transformation. Meanwhile higher O3 concentration and temperature promoted the homogeneous reaction of SO2. Lower temperature and high relative humidity (RH) were more suitable for heterogeneous reactions of NO2. Three-phase cluster analysis illustrated that the anthropogenic source ions and natural source ions were dominant WSIs during the heating and non-heating periods, respectively. The backward trajectory analysis and the potential source contribution function model indicated that Lanzhou was strongly influenced by the Hexi Corridor, northeastern Qinghai–Tibetan Plateau, northern Qinghai province, Inner Mongolia Plateau and its surrounding cities. This research will improve our understanding of the air quality and pollutant sources in the industrial environment.


2021 ◽  
Vol 102 ◽  
pp. 123-137
Author(s):  
Jie Su ◽  
Pusheng Zhao ◽  
Jing Ding ◽  
Xiang Du ◽  
Youjun Dou

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 926
Author(s):  
Hsing-Wang Li ◽  
Kang-Shin Chen ◽  
Chia-Hsiang Lai ◽  
Ting-Yu Chen ◽  
Yi-Ching Lin ◽  
...  

Atmospheric particulate matters (PMs) were measured in an industry-intensive region in central Taiwan in order to investigate the characteristics and possible sources of PMs. The samplings were simultaneously conducted using a 10- and 3-stage Micro Orifice Uniform Deposit Impactor (MOUDI) from 2017 to 2018. In this study, the characteristics of PMs in this region were evaluated by measuring the mass concentration of PMs and analyzing water-soluble ions and metallic elements, as well as dioxins. Additionally, principal component analysis (PCA) was used to identify the potential sources of PMs. The results showed that the mean concentration of coarse (>1.8 μm), fine (0.1–1.8 μm), and ultrafine (<0.1 μm) particles were 13.60, 14.38, and 3.44 μg/m3, respectively. In the industry-intensive region, the size distribution of ambient particles showed a bi-modal distribution with a high concentration of coarse particles in the spring and summer, while fine particles were dominant in the autumn and winter. The most abundant water-soluble ions of PMs were NO3−, Cl−, and SO42−, while the majority of metallic elements were Na, Fe, Ca, Al, and Mg in different particle sizes. The results of Pearson’s correlation analysis for metals indicated that the particles in the collected air samples were related to the iron and steelmaking industries, coal burning, vehicle exhausts, and high-tech industries. The dioxin concentration ranged from 0.0006 to 0.0017 pg I-TEQ/Nm3. Principal component analysis (PCA) revealed that the contribution to PMs was associated with sea salt, secondary pollutants, and industrial process.


Author(s):  
Shuang Wang ◽  
Mandeep Kaur ◽  
Tengfei Li ◽  
Feng Pan

The present study was planned to explore the pollution characteristics, health risks, and influence of atmospheric fine particulate matter (PM2.5) and its components on blood routine parameters in a typical industrial city (Xinxiang City) in China. In this study, 102 effective samples 28 (April–May), 19 (July–August), 27 (September–October), 28 (December–January) of PM2.5 were collected during different seasons from 2017 to 2018. The water-soluble ions and metal elements in PM2.5 were analyzed via ion chromatography and inductively coupled plasma–mass spectrometry. The blood routine physical examination parameters under different polluted weather conditions from January to December 2017 and 2018, the corresponding PM2.5 concentration, temperature, and relative humidity during the same period were collected from Second People’s Hospital of Xinxiang during 2017–2018. Risk assessment was carried out using the generalized additive time series model (GAM). It was used to analyze the influence of PM2.5 concentration and its components on blood routine indicators of the physical examination population. The “mgcv” package in R.3.5.3 statistical software was used for modeling and analysis and used to perform nonparametric smoothing on meteorological indicators such as temperature and humidity. When Akaike’s information criterion (AIC) value is the smallest, the goodness of fit of the model is the highest. Additionally, the US EPA exposure model was used to evaluate the health risks caused by different heavy metals in PM2.5 to the human body through the respiratory pathway, including carcinogenic risk and non-carcinogenic risk. The result showed that the air particulate matter and its chemical components in Xinxiang City were higher in winter as compared to other seasons with an overall trend of winter > spring > autumn > summer. The content of nitrate (NO3−) and sulfate (SO42−) ions in the atmosphere were higher in winter, which, together with ammonium, constitute the main components of water-soluble ions in PM2.5 in Xinxiang City. Source analysis reported that mobile pollution sources (coal combustion emissions, automobile exhaust emissions, and industrial emissions) in Xinxiang City during the winter season contributed more to atmospheric pollution as compared to fixed sources. The results of the risk assessment showed that the non-carcinogenic health risk of heavy metals in fine particulate matter is acceptable to the human body, while among the carcinogenic elements, the order of lifetime carcinogenic risk is arsenic (As) > chromium(Cr) > cadmium (Cd) > cobalt(Co) > nickel (Ni). During periods of haze pollution, the exposure concentration of PM2.5 has a certain lag effect on blood routine parameters. On the day when haze pollution occurs, when the daily average concentration of PM2.5 rises by 10 μg·m−3, hemoglobin (HGB) and platelet count (PLT) increase, respectively, by 9.923% (95% CI, 8.741–11.264) and 0.068% (95% CI, 0.067–0.069). GAM model analysis predicted the maximum effect of PM2.5 exposure concentration on red blood cell count (RBC) and PLT was reached when the hysteresis accumulates for 1d (Lag0). The maximum effect of exposure concentration ofPM2.5 on MONO is reached when the lag accumulation is 3d (Lag2). When the hysteresis accumulates for 6d (Lag5), the exposure concentration of PM2.5 has the greatest effect on HGB. The maximum cumulative effect of PM2.5 on neutrophil count (NEUT) and lymphocyte (LMY) was strongest when the lag was 2d (Lag1). During periods of moderate to severe pollution, the concentration of water-soluble ions and heavy metal elements in PM2.5 increases significantly and has a significant correlation with some blood routine indicators.


1972 ◽  
Vol 56 (2) ◽  
pp. 493-499
Author(s):  
N. J. LANE ◽  
J. E. TREHERNE

1. Ultrastructural observations on the uptake of an exogenous tracer substance, horseradish peroxidase (M.W. 40,000), have shown that this large molecule can penetrate the neural lamella in intact cerebro-visceral connectives of the lamellibranch, Anodonta cygnea. 2. Peroxidase molecules were also observed to penetrate between the intercellular clefts formed by adjacent membranes of the underlying peripheral glial cell layer and to move extensively into the underlying extracellular spaces. 3. These observations confirm the results of previous electrophysiological, radioisotopic and ultrastructural investigations indicating that a relatively rapid exchange of water-soluble ions and molecules occurs between the blood, or bathing medium, and the extracellular fluid bathing the axon surfaces in intact connectives.


Sign in / Sign up

Export Citation Format

Share Document