Carbon and nitrogen mobilisation by earthworms of different functional groups as affected by soil sand content

Pedobiologia ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 263-272 ◽  
Author(s):  
O. Butenschoen ◽  
S. Marhan ◽  
R. Langel ◽  
S. Scheu
2020 ◽  
Vol 1 (1) ◽  
pp. 20-43 ◽  
Author(s):  
Palanivel Rameshthangam ◽  
Dhanasekaran Solairaj ◽  
Gnanapragasam Arunachalam ◽  
Palaniappan Ramasamy

Disposal of chitin wastes from crustacean shell can cause environmental and health hazards. Chitin is a well known abundant natural polymer extracted after deproteinization and demineralization of the shell wastes of shrimp, crab, lobster, and krill. Extraction of chitin and its derivatives from waste material is one of the alternative ways to turn the waste into useful products. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. The presence of surface charge and multiple functional groups make chitin as a beneficial natural polymer. Due to the reactive functional groups chitin can be used for the preparation of a spectrum of chitin derivatives such as chitosan, alkyl chitin, sulfated chitin, dibutyryl chitin and carboxymethyl chitin for specific applications in different areas. The present review is aimed to summarize the efficacy of the chitinases on the chitin and its derivatives and their diverse applications in biomedical and environmental field. Further this review also discusses the synthesis of various chitin derivatives in detail and brings out the importance of chitin and its derivatives in biomedical and environmental applications.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yaxing Li ◽  
Shenfu Yuan

AbstractIn this study, humic acids (HAs) were extracted from Chinese lignite by adding KOH to a NaOH solution. The extraction yield of HAs was found to improve because of the synergistic effect imparted by the alkali mixture of sodium hydroxide (NaOH) and potassium hydroxide (KOH). The maximum yield was obtained at 150 min by adding the mixture of 0.750 M NaOH + 0.710 M KOH to Xianfeng lignite at 80 °C. The potassium (K), sodium (Na), nitrogen (N), oxygen (O), and iron (Fe) contents were determined by X-ray diffraction, scanning electron microscopy, and proximate and ultimate analysis. The oxygen-containing functional groups in HAs were identified by Fourier transform infrared spectroscopy. The addition of KOH resulted in higher oxygen/carbon and nitrogen/carbon ratios and oxygen-containing functional groups, as compared with that in NaOH alone. The extractants containing KOH could release HAs with a higher proportion of K, Fe, N contents, which is beneficial for HAs fertilizers prepared from the lignite. The release of the nutrients (K, Fe, N) which are essential for the crops is determined by the KOH dosages.


1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Author(s):  
R.W. Carpenter

Interest in precipitation processes in silicon appears to be centered on transition metals (for intrinsic and extrinsic gettering), and oxygen and carbon in thermally aged materials, and on oxygen, carbon, and nitrogen in ion implanted materials to form buried dielectric layers. A steadily increasing number of applications of microanalysis to these problems are appearing. but still far less than the number of imaging/diffraction investigations. Microanalysis applications appear to be paced by instrumentation development. The precipitation reaction products are small and the presence of carbon is often an important consideration. Small high current probes are important and cryogenic specimen holders are required for consistent suppression of contamination buildup on specimen areas of interest. Focussed probes useful for microanalysis should be in the range of 0.1 to 1nA, and estimates of spatial resolution to be expected for thin foil specimens can be made from the curves shown in Fig. 1.


1971 ◽  
Author(s):  
Warren G. Bennis ◽  
Michael Beer ◽  
Gerald R. Pieters ◽  
Alan T. Hundert ◽  
Samuel H. Marcus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document