“It's hard to find balance when you're broken”: Exploring female endurance athletes’ psychological experience of recovery from relative energy deficiency in sport (RED-S)

2021 ◽  
pp. 100214
Author(s):  
Rachel K. Langbein ◽  
Daniel Martin ◽  
Jacquelyn Allen-Collinson ◽  
Patricia C. Jackman
2019 ◽  
Vol 5 (1) ◽  
pp. e000439 ◽  
Author(s):  
Monica Klungland Torstveit ◽  
Ida Lysdahl Fahrenholtz ◽  
Mia Beck Lichtenstein ◽  
Thomas Birkedal Stenqvist ◽  
Anna Katarina Melin

ObjectivesTo explore associations betweenexercise dependence, eating disorder (ED) symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes.MethodsFifty-three healthy well-trained male cyclists, triathletes and long-distance runners recruited from regional competitive sports clubs were included in this cross-sectional study. The protocol comprised the Exercise Dependence Scale (EXDS), the ED Examination Questionnaire (EDE-Q), measurements of body composition, resting metabolic rate, energy intake and expenditure and blood analysis of hormones and glucose.ResultsParticipants with higher EXDS score displayed a more negative energy balance compared with subjects with lower EXDS score (p<0.01). EXDS total score was positively correlated with EDE-Q global score (r=0.41, p<0.05) and the subscale score forrestraint eating(r=0.34, p<0.05) andweight concern(r=0.35, p<0.05). EXDS total score and the subscaleslack of controlandtolerancewere positively correlated with cortisol (r=0.38, p<0.01, r=0.39, p<0.01 and r=0.29, p<0.05, respectively). The EXDS subscaleswithdrawalandtolerancewere negatively correlated with fasting blood glucose (r=−0.31 and r=−0.32, p<0.05, respectively), whileintention effectwas negatively correlated with testosterone:cortisol ratio (r=−0.29, p<0.05) and positively correlated with cortisol:insulin ratio (r=0.33, p<0.05).ConclusionIn this sample of healthy male athletes, we found associations between higher EXDS scores, ED symptoms and biomarkers of RED-S, such as a more pronounced negative energy balance and higher cortisol levels.


Author(s):  
Amy R Lane ◽  
Anthony C Hackney ◽  
Abbie E Smith-Ryan ◽  
Kristen Kucera ◽  
Johna K Register-Mikalik ◽  
...  

Energy Availability and RED-S Risk Factors in Competitive, Non-elite Male Endurance Athletes Amy R Lane1, Anthony C Hackney()1, Abbie E Smith-Ryan1, Kristen Kucera1, Johna K Register-Mihalik1 and Kristin Ondrak1  1Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC 27599, USA © The Authors   Abstract Relative Energy Deficiency in Sport (RED-S) is predicated on the assumption that low energy availability (EA) induces deficiencies-dysfunction in multiple physiologic systems. However, research on RED-S and EA in male athletes is limited in comparison to women. The aim of this study is to investigate EA and the risk factors for RED-S, and their potential associations in non-elite male endurance athletes. Laboratory assessments for resting metabolic rate (RMR), bone mineral density (BMD), blood hormonal biomarkers and maximal aerobic capacity were conducted on 60 competitive, recreationally trained male endurance athletes (age=43.4±11.6 years [mean±SD], training=10.9±2.7 h/wk, 7.1±8.8 years). Participants provided 7-days of training logs and 4-days of diet records. Diet and training records were used to calculate EA. Correlations were used to examine associations between EA and RMR, BMD, stress fractures and reproductive, metabolic and bone biomarkers. Mean EA was 28.7±13.4 kcal/kg fat free mass (FFM), which categorized our sample as low EA (based upon published criterion, < 30 kcal/kg FFM) and at a high risk for RED-S. Hormonal and bone biomarkers were in normal clinical ranges, even though EA was low. The only interesting significant association was EA being negatively associated with total body BMD (r=–0.360, P=0.005), opposite of expectations. On average our subjects displayed a state of low EA based upon the criterion which has been primarily developed from female-based research. Nonetheless, our participants displayed no major hormonal or bone health disturbances found in athletes diagnosed with RED-S. A value of < 30 kcal/kg FFM to diagnose low EA may not be appropriate for non-elite endurance trained men. 


Author(s):  
Monica Klungland Torstveit ◽  
Ida Fahrenholtz ◽  
Thomas B. Stenqvist ◽  
Øystein Sylta ◽  
Anna Melin

Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMRratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMRratio < 0.90, n = 20) or normal (RMRratio > 0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8–21.8] hr vs. 10.8 [2.5–16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. −1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = −.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.


Medicina ◽  
2019 ◽  
Vol 55 (10) ◽  
pp. 665 ◽  
Author(s):  
Lane ◽  
Hackney ◽  
Smith-Ryan ◽  
Kucera ◽  
Registar-Mihalik ◽  
...  

Background and Objectives: Relative energy deficiency in sport (RED-S) has been introduced as a broad-spectrum syndrome leading to possible dysfunction in numerous physiological systems, driven primarily by low energy availability (EA). Research in females has identified specific EA cut-points indicative of risk level for developing physiological and performance disturbances. Cut-points in males have yet to be evaluated. This study examined the prevalence of low EA in competitive (non-elite), recreationally trained (CRT) male endurance athletes. Materials and Methods: Subjects were 108 CRT (38.6 ± 13.8 y; 12.2 ± 5.4 h/wk training) male endurance athletes (runners, cyclists, triathletes) who completed a descriptive survey online via Qualtrics® and returned 3 day diet and exercise training records. EA was calculated from returned surveys and training records. Resting metabolic rate (RMR) and lean body mass (LBM) were estimated from self-reported survey data. Prevalence of risk group was categorized based on the female cut-points: at risk (AR) ≤30 kcal/kg LBM, moderate risk (MR) = 30–45 kcal/kg LBM, or no risk (NR) ≥45 kcal/kg LBM. Results: In this sample, 47.2% (n = 51) were classified as AR, 33.3% (n = 36) as MR, and 19.4% (n = 21) as NR for low EA. Cyclists had lower EA (26.9 ± 17.4 kcal/kg LBM, n = 45) than runners (34.6 ± 13.3 kcal/kg LBM, n = 55, p = 0.016) and all other sport categories (39.5 ± 19.1 kcal/kg LBM, n = 8, p = 0.037). Conclusions: The findings indicate this sample had a high prevalence of risk for low EA, at 47.2%. Only 19.4% of participants were at no risk, meaning ~80% of participants were at some degree of risk of experiencing low EA. Cyclists were at greater risk in this cohort of low EA, although why this occurred was unclear and is in need of further investigation. Future research should address whether the current female cut-points for low EA are appropriate for use in male populations.


Author(s):  
Lisa-Maria Wallwiener ◽  
Barbara Kapfer ◽  
Vanadin Seifert-Klauss

ZusammenfassungRegelmäßige körperliche Betätigung trägt zu einer gesunden Knochendichte bei, Leistungssportlerinnen in einigen Sportarten weisen jedoch eine erhöhte Prävalenz erniedrigter Knochendichte sowie vermehrt Stressfrakturen auf. Häufig liegt dem ein relatives Energiedefizit (RED), verbunden mit hoher mechanischer Belastung und intensivem Trainingsalltag, zugrunde. Das Vorliegen eines RED im Sport ist oft unterdiagnostiziert, daher hat sich eine systematische multidisziplinäre Zusammenarbeit unter Zuhilfenahme standardisierter Tests, z. B. des RED‑S CAT (Relative Energy Deficiency in Sport Clinical Assessment Tool) als hilfreich erwiesen. Therapieansätze zielen primär auf eine Behebung der negativen Energiebilanz der Patientin als auch auf psychotherapeutische Interventionen ab. Darüber hinaus kann in schweren Fällen eine medikamentöse Therapie zur Unterstützung sowohl einer ausgeglichenen hormonellen Situation als auch des Knochenstoffwechsels notwendig sein.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12118
Author(s):  
Edyta Łuszczki ◽  
Pawel Jagielski ◽  
Anna Bartosiewicz ◽  
Maciej Kuchciak ◽  
Katarzyna Dereń ◽  
...  

Background It has been noticed that Female Athlete Triad (Fat) and Relative Energy Deficiency (Red-S) in Sport are characterized by the symptoms of impaired endocrine-metabolic function and bone health in female athletes. In addition, it may be evaluated with a qualitative tool, such as Low Energy Availability in Females questionnaire (LEAF-Q) and quantitative measurements: bone mineral density (BMD), resting energy expenditure (REE), body composition, 24-hour dietary recall. Methods The aim of this study was to assess the prevalence of Triad and Red-S using the LEAF-Q in youth female football players. Additionally, the difference in the BMD, body composition, REE and energy intake (EI) were assessed between the Triad/Red-S risk and not at-risk groups. Results Almost two thirds (64.7%) of participants are classified as being at-risk for the triad according to their LEAF-Q scores. There were no statistically significant differences (p > 0.05) between most of the values among children from the analyzed groups. There was a statistically significant difference (p < 0.001) between the EI values among girls from the two analyzed groups: at-risk (1,773.18 kcal ±  232.57) and not at-risk (2,054.00 kcal ±  191.39). Girls who did not meet the energy intake recommendations were 10.00 as likely to be in the Triad/Red-S risk group. Conclusion Early identification of Fat/Red-S symptoms by screening tools such as the LEAF questionnaire is important in protecting young athletes from long-term damage due to the progression of the risk factors associated with the Fat/Red-S.


2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


Sign in / Sign up

Export Citation Format

Share Document