Multiple large foreign protein expression by a single recombinant baculovirus: A system for production of multivalent vaccines

2013 ◽  
Vol 91 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Yuta Kanai ◽  
T.N. Athmaram ◽  
Meredith Stewart ◽  
Polly Roy
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jennifer A. Schmidt ◽  
Lubna V. Richter ◽  
Lisa A. Condoluci ◽  
Beth A. Ahner

Abstract Background The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. Results Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants’ metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant−1) by 50–70%. Conclusions The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Shili Yang ◽  
Lijuan Zhao ◽  
Ruipeng Ma ◽  
Wei Fang ◽  
Jia Hu ◽  
...  

ABSTRACT The relatively low infectivity of baculoviruses to their host larvae limits their use as insecticidal agents on a larger scale. In the present study, a novel strategy was developed to efficiently embed foreign proteins into Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion bodies (OBs) to achieve stable expression of foreign proteins and to improve viral infectivity. A recombinant AcMNPV bacmid was constructed by expressing the 150-amino-acid (aa) N-terminal segment of polyhedrin under the control of the p10 promoter and the remaining C-terminal 95-aa segment under the control of the polyhedrin promoter. The recombinant virus formed OBs in Spodoptera frugiperda 9 cells, in which the occlusion-derived viruses were embedded in a manner similar to that for wild-type AcMNPV. Next, the 95-aa polyhedrin C terminus was fused to enhanced green fluorescent protein, and the recombinant AcMNPV formed fluorescent green OBs and was stably passaged in vitro and in vivo. The AcMNPV recombinants were further modified by fusing truncated Agrotis segetum granulovirus enhancin or truncated Cydia pomonella granulovirus ORF13 (GP37) to the C-terminal 95 aa of polyhedrin, and both recombinants were able to form normal OBs. Bioactivity assays indicated that the median lethal concentrations of these two AcMNPV recombinants were 3- to 5-fold lower than that of the control virus. These results suggest that embedding enhancing factors in baculovirus OBs by use of this novel technique may promote efficient and stable foreign protein expression and significantly improve baculovirus infectivity. IMPORTANCE Baculoviruses have been used as bioinsecticides for over 40 years, but their relatively low infectivity to their host larvae limits their use on a larger scale. It has been reported that it is possible to improve baculovirus infectivity by packaging enhancing factors within baculovirus occlusion bodies (OBs); however, so far, the packaging efficiency has been low. In this article, we describe a novel strategy for efficiently embedding foreign proteins into AcMNPV OBs by expressing N- and C-terminal (dimidiate) polyhedrin fragments (150 and 95 amino acids, respectively) as fusions to foreign proteins under the control of the p10 and polyhedrin promoters, respectively. When this strategy was used to embed an enhancing factor (enhancin or GP37) into the baculovirus OBs, 3- to 5-fold increases in baculoviral infectivity were observed. This novel strategy has the potential to create an efficient protein expression system and a highly efficient virus-based system for insecticide production in the future.


1994 ◽  
pp. 605-609
Author(s):  
Anthony R. Fooks ◽  
John R. Stephenson ◽  
Alan Warnes ◽  
Barry Dowsett ◽  
Gavin W. Wilkinson ◽  
...  

2021 ◽  
Author(s):  
Ali Iftikhar

Abstract BackgroundOptimization of conditions for the recombinant production of proteins in a prokaryotic expression system is essential as the recombinant proteins impose a metabolic burden on cell's growth leading to low protein yield and low protein expression resulting from cell death.Main textThe concentration of media components is optimized to accommodate for depleted nutrients due to foreign protein expression. The temperature is optimized to reduce proteolytic degradation and accumulation of protein as inclusion bodies in Escherichia coli. The concentration of inducer and time of induction for high protein yield is also optimized. These optimization conditions depend on the promoter under which the gene of interest is present and the characteristics of the target protein.ConclusionIn the past few years, many optimization conditions for the production of recombinant proteins in Escherichia coli have been studied. These conditions depend mainly upon the promoter used to produce protein and the type of protein produced. Optimizing the expression parameters of protein produced in Escherichia coli ensures maximum yield of the desired protein.


Sign in / Sign up

Export Citation Format

Share Document