scholarly journals Transcriptomics and coexpression network profiling of the effects of levamisole hydrochloride on Bursaphelenchus xylophilus

Author(s):  
Jie Chen ◽  
Xin Hao ◽  
Buyong Wang ◽  
Ling Ma
1988 ◽  
Vol 54 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Keiko KURODA ◽  
Toshihiro YAMADA ◽  
Kazuhiko MINEO ◽  
Hirotada TAMURA

2019 ◽  
Vol 76 (1) ◽  
pp. 205-214 ◽  
Author(s):  
Jia Tang ◽  
Ruoqing Ma ◽  
Najie Zhu ◽  
Kai Guo ◽  
Yiqing Guo ◽  
...  

Author(s):  
Christopher L. Hartl ◽  
Gokul Ramaswami ◽  
William G. Pembroke ◽  
Sandrine Muller ◽  
Greta Pintacuda ◽  
...  

2021 ◽  
Author(s):  
Hwan-Su Hwang ◽  
Jung Yeon Han ◽  
Yong Eui Choi

Abstract Pine wood nematodes (PWNs: Bursaphelenchus xylophilus) infect pine trees and cause serious pine wilt disease. Eastern white pine (Pinus strobus) has resistance to PWN. However, the detailed defense mechanisms of P. strobus against PWN are not well known. When P. strobus plants were infected with PWNs, the accumulation of stilbenoids, dihydropinosylvin monomethyl ether (DPME) and pinosylvin monomethyl ether (PME), were increased remarkably. DPME and PME had the high nematicidal activity. Interestingly, the nematicidal activity of the two compounds was resulted in a developmental stage-dependent manner. PME was more toxic to adult PWNs than juveniles, whereas DPME was found more toxic to juvenile PWNs than the adults. The genes involved in PME and DPME biosynthesis such as phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), pinosylvin synthase (STS), and pinosylvin O-methyltransferase (PMT) were isolated using de novo sequencing of the transcriptome in P. strobus. In addition, transcription factors (bHLH, MYB and WRKY) related to stilbene biosynthesis were isolated. qPCR analyses of the selected genes (PAL, 4CL, STS, and PMT) including transcription factors (bHLH, MYB and WRKY) revealed that the expression level of the selected genes highly enhanced after PWN infection. Our results suggest that pinosylvin-type stilbenoid biosynthesis is highly responsive to PWN infection and plays an important role in PWN resistance of P. strobus trees.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiaoli Chen ◽  
Ruizhi Zhang ◽  
Danlei Li ◽  
Feng Wang

AbstractThe third-stage dispersal juvenile (DJ3) of pinewood nematode (PWN) is highly associated with low-temperature survival and spread of the nematode. Oil-Red-O staining showed that its lipid content was significantly higher compared with other PWN stages. Weighted gene coexpression network analysis identified that genes in the pink module were highly related to DJ3 induced in the laboratory (DJ3-lab). These genes were arranged according to their gene significance (GS) to DJ3-lab. Of the top 30 genes with the highest GS, seven were found to be highly homologous to the cysteine protease family cathepsin 1 (CATH1). The top 30 genes with the highest weight value to each of the seven genes in the pink module were selected, and finally 35 genes were obtained. Between these seven CATH1 homologous genes and their 35 highly related genes, 15 were related to fat metabolism or autophagy. These autophagy-related genes were also found to be highly correlated with other genes in the pink module, suggesting that autophagy might be involved in the mechanism of longevity in DJ3 and the formation of DJ3 by regulating genes related to fat metabolism.


Sign in / Sign up

Export Citation Format

Share Document