Hybrid derivative-free technique and effective machine learning surrogate for nonlinear constrained well placement and production optimization

2020 ◽  
Vol 186 ◽  
pp. 106726
Author(s):  
Yusuf Nasir ◽  
Wei Yu ◽  
Kamy Sepehrnoori
Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


2008 ◽  
Author(s):  
D. Maggs ◽  
A.G. Raffn ◽  
Francisco Porturas ◽  
J. Murison ◽  
F. Tay ◽  
...  

2021 ◽  
Author(s):  
Subba Ramarao Rachapudi Venkata ◽  
Nagaraju Reddicharla ◽  
Shamma Saeed Alshehhi ◽  
Indra Utama ◽  
Saber Mubarak Al Nuimi ◽  
...  

Abstract Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability. The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation. The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process. The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation. A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.


2021 ◽  
Author(s):  
Hamid Pourpak ◽  
Samuel Taubert ◽  
Marios Theodorakopoulos ◽  
Arnaud Lefebvre-Prudencio ◽  
Chay Pointer ◽  
...  

Abstract The Diyab play is an emerging unconventional play in the Middle East. Up to date, reservoir characterization assessments have proved adequate productivity of the play in the United Arab Emirates (UAE). In this paper, an advanced simulation and modeling workflow is presented, which was applied on selected wells located on an appraisal area, by integrating geological, geomechanical, and hydraulic fracturing data. Results will be used to optimize future well landing points, well spacing and completion designs, allowing to enhance the Stimulated Rock Volume (SRV) and its consequent production. A 3D static model was built, by propagating across the appraisal area, all subsurface static properties from core-calibrated petrophysical and geomechanical logs which originate from vertical pilot wells. In addition, a Discrete Fracture Network (DFN) derived from numerous image logs was imported in the model. Afterwards, completion data from one multi-stage hydraulically fracked horizontal well was integrated into the sector model. Simulations of hydraulic fracturing were performed and the sector model was calibrated to the real hydraulic fracturing data. Different scenarios for the fracture height were tested considering uncertainties related to the fracture barriers. This has allowed for a better understanding of the fracture propagation and SRV creation in the reservoir at the main target. In the last step, production resulting from the SRV was simulated and calibrated to the field data. In the end, the calibrated parameters were applied to the newly drilled nearby horizontal wells in the same area, while they were hydraulically fractured with different completion designs and the simulated SRVs of the new wells were then compared with the one calculated on the previous well. Applying a fully-integrated geology, geomechanics, completion and production workflow has helped us to understand the impact of geology, natural fractures, rock mechanical properties and stress regimes in the SRV geometry for the unconventional Diyab play. This work also highlights the importance of data acquisition, reservoir characterization and of SRV simulation calibration processes. This fully integrated workflow will allow for an optimized completion strategy, well landing and spacing for the future horizontal wells. A fully multi-disciplinary simulation workflow was applied to the Diyab unconventional play in onshore UAE. This workflow illustrated the most important parameters impacting the SRV creation and production in the Diyab formation for he studied area. Multiple simulation scenarios and calibration runs showed how sensitive the SRV can be to different parameters and how well placement and fracture jobs can be possibly improved to enhance the SRV creation and ultimately the production performance.


2021 ◽  
Author(s):  
Jimmy Thatcher ◽  
Abdul Rehman ◽  
Ivan Gee ◽  
Morgan Eldred

Abstract Oil & Gas extraction companies are using a vast amount of capital and expertise on production optimization. The scale and diversity of information required for analysis is massive and often leading to a prioritization between time and precision for the teams involved in the process. This paper provides a success story of how artificial intelligence (AI) is used to dynamically and effeciently optimize and predict production of gas wells. In particular, we focus on the application of unsupervised machine learning to identify under different potential constraints the optimal production parameter settings that can lead to maximum production. A machine learning model is supported by a decision support system that can enhance future drilling operations and also help answer important questions such as why a particular well or group of wells is producing differently than others of the same type or what kind of parameters that work on different wells in different conditions. The model can be advanced to optimize within field constraints such as facility handling capacity, quotas, budget or emmisions. The methods used were a combination of similarity measures and unsupervised machine learning techniques which were effective in identifying wells and clusters of wells that have similar production and behavioral profiles. The clusters of wells were then used to identify the process path (specific drilling and completion, choke size, chemicals, etc processes) most likely to result in optimal production and to identify the most impactful variables on production rate or cumulative production via an additional clustering of the principle charactersitics of the well. The data sets used to build these models include but are not limited to gas production data (daily volume), drilling data (well logs, fluid summary etc.), completion data (frac, cement bond logs), and pre-production testing data (choke, pressure etc.) Initial results indicate that this approach is a feasible approach, on target in terms of accuracy with traditional methods and represents a novel, data driven, method of identifying optimal parameter settings for desired production levels; with the ability to perform forecasts and optimization scenarios in run-time. The approach of using machine learning for production forecasting and production optimization in run-time has immense values in terms of the ability to augment domain expertise and create detailed studies in a fraction of the time that is typically required using traditional approaches. Building on same approach to optimise the field to deliver most reliable or most effeciently against a parameter will be an invaluable feature for overall asset optimisation.


2014 ◽  
Vol 114 ◽  
pp. 22-37 ◽  
Author(s):  
Masoud Asadollahi ◽  
Geir Nævdal ◽  
Mohsen Dadashpour ◽  
Jon Kleppe

Sign in / Sign up

Export Citation Format

Share Document