AI for Production Forecasting and Optimization of Gas Wells: A Case Study on a Middle-East Gas Field

2021 ◽  
Author(s):  
Jimmy Thatcher ◽  
Abdul Rehman ◽  
Ivan Gee ◽  
Morgan Eldred

Abstract Oil & Gas extraction companies are using a vast amount of capital and expertise on production optimization. The scale and diversity of information required for analysis is massive and often leading to a prioritization between time and precision for the teams involved in the process. This paper provides a success story of how artificial intelligence (AI) is used to dynamically and effeciently optimize and predict production of gas wells. In particular, we focus on the application of unsupervised machine learning to identify under different potential constraints the optimal production parameter settings that can lead to maximum production. A machine learning model is supported by a decision support system that can enhance future drilling operations and also help answer important questions such as why a particular well or group of wells is producing differently than others of the same type or what kind of parameters that work on different wells in different conditions. The model can be advanced to optimize within field constraints such as facility handling capacity, quotas, budget or emmisions. The methods used were a combination of similarity measures and unsupervised machine learning techniques which were effective in identifying wells and clusters of wells that have similar production and behavioral profiles. The clusters of wells were then used to identify the process path (specific drilling and completion, choke size, chemicals, etc processes) most likely to result in optimal production and to identify the most impactful variables on production rate or cumulative production via an additional clustering of the principle charactersitics of the well. The data sets used to build these models include but are not limited to gas production data (daily volume), drilling data (well logs, fluid summary etc.), completion data (frac, cement bond logs), and pre-production testing data (choke, pressure etc.) Initial results indicate that this approach is a feasible approach, on target in terms of accuracy with traditional methods and represents a novel, data driven, method of identifying optimal parameter settings for desired production levels; with the ability to perform forecasts and optimization scenarios in run-time. The approach of using machine learning for production forecasting and production optimization in run-time has immense values in terms of the ability to augment domain expertise and create detailed studies in a fraction of the time that is typically required using traditional approaches. Building on same approach to optimise the field to deliver most reliable or most effeciently against a parameter will be an invaluable feature for overall asset optimisation.

2021 ◽  
Author(s):  
Marcelo E. Pellenz ◽  
Rosana Lachowski ◽  
Edgard Jamhour ◽  
Glauber Brante ◽  
Guilherme Luiz Moritz ◽  
...  

Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 258
Author(s):  
Tran Dinh Khang ◽  
Manh-Kien Tran ◽  
Michael Fowler

Clustering is an unsupervised machine learning method with many practical applications that has gathered extensive research interest. It is a technique of dividing data elements into clusters such that elements in the same cluster are similar. Clustering belongs to the group of unsupervised machine learning techniques, meaning that there is no information about the labels of the elements. However, when knowledge of data points is known in advance, it will be beneficial to use a semi-supervised algorithm. Within many clustering techniques available, fuzzy C-means clustering (FCM) is a common one. To make the FCM algorithm a semi-supervised method, it was proposed in the literature to use an auxiliary matrix to adjust the membership grade of the elements to force them into certain clusters during the computation. In this study, instead of using the auxiliary matrix, we proposed to use multiple fuzzification coefficients to implement the semi-supervision component. After deriving the proposed semi-supervised fuzzy C-means clustering algorithm with multiple fuzzification coefficients (sSMC-FCM), we demonstrated the convergence of the algorithm and validated the efficiency of the method through a numerical example.


2021 ◽  
pp. 2004099
Author(s):  
Sarah L. Finnegan ◽  
Olivia K. Harrison ◽  
Catherine J. Harmer ◽  
Mari Herigstad ◽  
Najib M. Rahman ◽  
...  

RationaleCurrent models of breathlessness often fail to explain disparities between patients' experiences of breathlessness and objective measures of lung function. While a mechanistic understanding of this discordance has thus far remained elusive, factors such as mood, attention and expectation have all been implicated as important modulators of breathlessness. Therefore, we have developed a model to better understand the relationships between these factors using unsupervised machine learning techniques. Subsequently we examined how expectation-related brain activity differed between these symptom-defined clusters of participants.MethodsA cohort of 91 participants with mild-to-moderate chronic obstructive pulmonary disease (COPD) underwent functional brain imaging, self-report questionnaires and clinical measures of respiratory function. Unsupervised machine learning techniques of exploratory factor analysis and hierarchical cluster modelling were used to model brain-behaviour-breathlessness links.ResultsWe successfully stratified participants across four key factors corresponding to mood, symptom burden and two capability measures. Two key groups resulted from this stratification, corresponding to high and low symptom burden. Compared to the high symptom load group, the low symptom burden group demonstrated significantly greater brain activity within the anterior insula, a key region thought to be involved in monitoring internal bodily sensations (interoception).ConclusionsThis is the largest functional neuroimaging study of COPD to date and is the first to provide a clear model linking brain, behaviour and breathlessness expectation. Furthermore, it was possible to stratify participants into groups, which then revealed differences in brain activity patterns. Together, these findings highlight the value of multi-modal models of breathlessness in identifying behavioural phenotypes, and for advancing understanding of differences in breathlessness burden.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1268 ◽  
Author(s):  
Zhenzhen Di ◽  
Miao Chang ◽  
Peikun Guo ◽  
Yang Li ◽  
Yin Chang

Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those in surface water have not been fully revealed and unsupervised machine learning techniques, such as clustering algorithms, have been neglected in related research fields. In this study, real-time monitoring data for chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH, and dissolved oxygen in the wastewater discharged from 2213 factories and in the surface water at 18 monitoring sections (sites) in 7 administrative regions in the Yangtze River Basin from 2016 to 2017 were collected and analyzed by the partitioning around medoids (PAM) and expectation–maximization (EM) clustering algorithms, Welch t-test, Wilcoxon test, and Spearman correlation. The results showed that compared with the spatial cluster comprising unpolluted sites, the spatial cluster comprised heavily polluted sites where more wastewater was discharged had relatively high COD (>100 mg L−1) and NH3-N (>6 mg L−1) concentrations and relatively low pH (<6) from 15 industrial classes that respected the different discharge limits outlined in the pollutant discharge standards. The results also showed that the economic activities generating wastewater and the geographical distribution of the heavily polluted wastewater changed from 2016 to 2017, such that the concentration ranges of pollutants in discharges widened and the contributions from some emerging enterprises became more important. The correlations between the quality of the wastewater and the surface water strengthened as the whole-year data sets were reduced to the heavily polluted periods by the EM clustering and water quality evaluation. This study demonstrates how unsupervised machine learning algorithms play an objective and effective role in data mining real-time monitoring information and highlighting spatio–temporal relationships between pollutants in wastewater discharges and surface water to support scientific water resource management.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Emanuele Boattini ◽  
Susana Marín-Aguilar ◽  
Saheli Mitra ◽  
Giuseppe Foffi ◽  
Frank Smallenburg ◽  
...  

Abstract Few questions in condensed matter science have proven as difficult to unravel as the interplay between structure and dynamics in supercooled liquids. To explore this link, much research has been devoted to pinpointing local structures and order parameters that correlate strongly with dynamics. Here we use an unsupervised machine learning algorithm to identify structural heterogeneities in three archetypical glass formers—without using any dynamical information. In each system, the unsupervised machine learning approach autonomously designs a purely structural order parameter within a single snapshot. Comparing the structural order parameter with the dynamics, we find strong correlations with the dynamical heterogeneities. Moreover, the structural characteristics linked to slow particles disappear further away from the glass transition. Our results demonstrate the power of machine learning techniques to detect structural patterns even in disordered systems, and provide a new way forward for unraveling the structural origins of the slow dynamics of glassy materials.


Sign in / Sign up

Export Citation Format

Share Document