Observations on the impact of displacement properties on mobility and relative permeability

2022 ◽  
Vol 208 ◽  
pp. 109435
Author(s):  
Andrew Fager ◽  
Guangyuan Sun ◽  
Rui Xu ◽  
Bernd Crouse ◽  
Gary Jerauld ◽  
...  
SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1234-1247 ◽  
Author(s):  
Shuangmei Zou ◽  
Ryan T. Armstrong

Summary Wettability is a major factor that influences multiphase flow in porous media. Numerous experimental studies have reported wettability effects on relative permeability. Laboratory determination for the impact of wettability on relative permeability continues to be a challenge because of difficulties with quantifying wettability alteration, correcting for capillary-end effect, and observing pore-scale flow regimes during core-scale experiments. Herein, we studied the impact of wettability alteration on relative permeability by integrating laboratory steady-state experiments with in-situ high-resolution imaging. We characterized wettability alteration at the core scale by conventional laboratory methods and used history matching for relative permeability determination to account for capillary-end effect. We found that because of wettability alteration from water-wet to mixed-wet conditions, oil relative permeability decreased while water relative permeability slightly increased. For the mixed-wet condition, the pore-scale data demonstrated that the interaction of viscous and capillary forces resulted in viscous-dominated flow, whereby nonwetting phase was able to flow through the smaller regions of the pore space. Overall, this study demonstrates how special-core-analysis (SCAL) techniques can be coupled with pore-scale imaging to provide further insights on pore-scale flow regimes during dynamic coreflooding experiments.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2874-2888 ◽  
Author(s):  
Hasan Al–Ibadi ◽  
Karl D. Stephen ◽  
Eric J. Mackay

Summary Low–salinity waterflooding (LSWF) is an emergent technology developed to increase oil recovery. Laboratory–scale testing of this process is common, but modeling at the production scale is less well–reported. Various descriptions of the functional relationship between salinity and relative permeability have been presented in the literature, with respect to the differences in the effective salinity range over which the mechanisms occur. In this paper, we focus on these properties and their impact on fractional flow of LSWF at the reservoir scale. We present numerical observations that characterize flow behavior accounting for dispersion. We analyzed linear and nonlinear functions relating salinity to relative permeability and various effective salinity ranges using a numerical simulator. We analyzed the effect of numerical and physical dispersion of salinity on the velocity of the waterflood fronts as an expansion of fractional–flow theory, which normally assumes shock–like behavior of water and concentration fronts. We observed that dispersion of the salinity profile affects the fractional–flow behavior depending on the effective salinity range. The simulator solution is equal to analytical predictions from fractional–flow analysis when the midpoint of the effective salinity range lies between the formation and injected salinities. However, retardation behavior similar to the effect of adsorption occurs when these midpoint concentrations are not coincidental. This alters the velocities of high– and low–salinity water fronts. We derived an extended form of the fractional–flow analysis to include the impact of salinity dispersion. A new factor quantifies a physical or numerical retardation that occurs. We can now modify the effects that dispersion has on the breakthrough times of high– and low–salinity water fronts during LSWF. This improves predictive ability and also reduces the requirement for full simulation.


2021 ◽  
Author(s):  
Latifa Obaid Alnuaimi ◽  
Mehran Sohrabi ◽  
Shokoufeh Aghabozorgi ◽  
Ahmed Alshmakhy

Abstract Simulation of Water-Alternating-Gas (WAG) Experiments require precise estimation of hysteresis phenomenon in three-phase relative permeability. Most of the research available in the literature are focused on experiments performed on sandstone rocks and the study of carbonate rocks has attracted less attention. In this paper, a recently published hysteresis model by Heriot-Watt University (HWU) was used for simulation of WAG experiments conducted on mixed-wet homogenous carbonate rock. In this study, we simulated immiscible WAG experiments, which were performed under reservoir conditions on mixed-wet carbonate reservoir rock extracted from Abu Dhabi field by using real reservoir fluids. Experiments are performed with different injection scenarios and at high IFT conditions. Then, the results of the coreflood experiments were history matched using 3RPSim to generate two-phase and three-phase relative permeability data. Finally, the hysteresis model suggested by Heriot-Watt University was used for the estimation of hysteresis in relative permeability data. The performance of the model was compared with the experimental data from sandstones to evaluate the impact of heterogeneity on hysteresis phenomenon. It was shown that the available correlations for estimation of three-phase oil relative permeability fail to simulate the oil production during WAG experiments, while the modified Stone model suggested by HWU provided a better prediction. Overall, HWU hysteresis model improved the match for trapped gas saturation and pressure drop. The results show that the hysteresis effect is less dominant in the carbonate rock compared to the sandstone rock. The tracer test results show that the carbonate rock is more homogenous compared to sandstone rock. Therefore, the conclusion is that the hysteresis effect is negligible in homogenous systems.


1997 ◽  
Vol 18 (1-2) ◽  
pp. 1-19 ◽  
Author(s):  
Y.C. Chang ◽  
K.K. Mohanty ◽  
D.D. Huang ◽  
M.M. Honarpour

Sign in / Sign up

Export Citation Format

Share Document