Sensitivity analysis of injection parameters in steam assisted gravity drainage under geological uncertainty

Author(s):  
Luã Monteiro ◽  
Catarina Baptista-Pereira ◽  
Leonardo Azevedo
SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 353-363 ◽  
Author(s):  
Mahdie Mojarad ◽  
Hassan Dehghanpour

Summary Recently, different models were proposed to describe two- and three-phase flow at the edge of a steam chamber developed during a steam-assisted-gravity-drainage (SAGD) process. However, 2D-scaled SAGD experiments and recent micromodel visualizations demonstrate that steam condensate is primarily in the form of microbubbles dispersed in the oil phase (water-in-oil emulsion). Therefore, the challenging question is: Can the multiphase Darcy equation be used to describe the transport of water as a discontinuous phase? Furthermore, the physical impact of water as a continuous phase or as microbubbles on oil flow can be different. Water microbubbles increase the apparent oil viscosity, whereas a continuous water phase decreases the oil relative permeability. Investigating the impact of these two phenomena on oil mobility at the steam-chamber edge and on overall oil-production rate during an SAGD process requires development of relevant mathematical models, which is the focus of this paper. In this paper, we develop an analytical model for lateral expansion of the steam chamber that accounts for formation and transport of water-in-oil emulsion. It is assumed that emulsion is generated as a result of condensation of steam, which penetrates into the heated bitumen. The emulsion concentration decreases from a maximum value at the chamber interface to zero far from the interface. The oil viscosity is affected by both temperature gradient caused by heat conduction and microbubble concentration gradient resulting from emulsification. We conduct a sensitivity analysis with the measured data from scaled SAGD experiments. The sensitivity analysis shows that, by increasing the value of m (temperature viscosity parameter), the effect of emulsification on oil-flow rate decreases. It also shows that the effect of temperature on oil mobility is much stronger than that of emulsion. We also compare the model predictions with field production data from several SAGD operations. Butler's model overestimates oil-production rate caused by the single-phase assumption, whereas the proposed model presents more-accurate oil-flow rate, supporting the fact that one should include emulsification effect in the SAGD analysis.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 427
Author(s):  
Jingyi Wang ◽  
Ian Gates

To extract viscous bitumen from oil sands reservoirs, steam is injected into the formation to lower the bitumen’s viscosity enabling sufficient mobility for its production to the surface. Steam-assisted gravity drainage (SAGD) is the preferred process for Athabasca oil sands reservoirs but its performance suffers in heterogeneous reservoirs leading to an elevated steam-to-oil ratio (SOR) above that which would be observed in a clean oil sands reservoir. This implies that the SOR could be used as a signature to understand the nature of heterogeneities or other features in reservoirs. In the research reported here, the use of the SOR as a signal to provide information on the heterogeneity of the reservoir is explored. The analysis conducted on prototypical reservoirs reveals that the instantaneous SOR (iSOR) can be used to identify reservoir features. The results show that the iSOR profile exhibits specific signatures that can be used to identify when the steam chamber reaches the top of the formation, a lean zone, a top gas zone, and shale layers.


2013 ◽  
Vol 27 (7) ◽  
pp. 3883-3890 ◽  
Author(s):  
Subhayan Guha Thakurta ◽  
Abhijit Maiti ◽  
David J. Pernitsky ◽  
Subir Bhattacharjee

SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


Sign in / Sign up

Export Citation Format

Share Document