G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects

2021 ◽  
Vol 217 ◽  
pp. 107649 ◽  
Author(s):  
Claudia Riccardi ◽  
Ettore Napolitano ◽  
Chiara Platella ◽  
Domenica Musumeci ◽  
Daniela Montesarchio
2013 ◽  
Vol 20 (38) ◽  
pp. 4836-4843 ◽  
Author(s):  
E. Zavyalova ◽  
A. Golovin ◽  
G. Pavlova ◽  
A. Kopylov

2020 ◽  
Vol 56 (16) ◽  
pp. 2427-2430
Author(s):  
Yan Liu ◽  
Peidong Lai ◽  
Jingru Wang ◽  
Xiwen Xing ◽  
Liang Xu

Chemical modifications of the hemin structure through introducing new functionalities are proposed to enhance the catalytic efficiency of the hemin/G-quadruplex DNAzyme.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4620
Author(s):  
Vibhav Valsangkar ◽  
Sweta Vangaveti ◽  
Goh Woon Lee ◽  
Walid M. Fahssi ◽  
Waqas S. Awan ◽  
...  

The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5′ end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA–thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.


2021 ◽  
Vol 14 (12) ◽  
pp. 1326
Author(s):  
Weronika Kotkowiak ◽  
Zofia Jahnz-Wechmann ◽  
Anna Pasternak

Aptamers constitute an answer for the growing need for targeted therapy development. One of the most well-known representatives of this group of compounds is thrombin binding aptamers (TBA) targeted towards thrombin. The TBA inhibitory activity is determined by its spatial arrangement, which consists of two G-tetrads linked by two shorter TT loops and one longer TGT loop and folds into a unimolecular, antiparallel G-quadruplex structure. Interesting properties of the aptamer can be further improved via the introduction of a number of chemical modifications. Herein, a comprehensive analysis of the influence of pyrrolo-2’-deoxycytidine (Py-dC) and its derivatives on TBA physicochemical and biological properties has been presented. The studies have shown that the presence of modified residues at the T7 position of the TGT loop has only minor effects on TBA thermodynamic stability without affecting its folding topology. All analyzed oligomers exhibit anticoagulant properties, but only aptamer modified with a decyl derivative of Py-dC was able to inhibit thrombin activity more efficiently than unmodified, parental compounds. Importantly, the same compound also possessed the potential to effectively restrain HeLa cell line growth.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


1990 ◽  
Vol 63 (02) ◽  
pp. 220-223 ◽  
Author(s):  
J Hauptmann ◽  
B Kaiser ◽  
G Nowak ◽  
J Stürzebecher ◽  
F Markwardt

SummaryThe anticoagulant effect of selected synthetic inhibitors of thrombin and factor Xa was studied in vitro in commonly used clotting assays. The concentrations of the compounds doubling the clotting time in the various assays were mainly dependent on their thrombin inhibitory activity. Factor Xa inhibitors were somewhat more effective in prolonging the prothrombin time compared to the activated partial thromboplastin time, whereas the opposite was true of thrombin inhibitors.In vivo, in a venous stasis thrombosis model and a thromboplastin-induced microthrombosis model in rats the thrombin inhibitors were effective antithrombotically whereas factor Xa inhibitors of numerically similar IQ value for the respective enzyme were not effective at equimolar dosageThe results are discussed in the light of the different prelequisiles and conditions for inhibition of thrombin and factor Xa in the course of blood clotting.


1989 ◽  
Vol 62 (03) ◽  
pp. 989-995 ◽  
Author(s):  
Juliette N Mulvihill ◽  
J Andrew Davies ◽  
Florence Toti ◽  
Jean-Marie Freyssinet ◽  
Jean-Pierre Cazenave

SummaryThe generation of trace amounts of thrombin at artificial surfaces in contact with blood is likely to be a contributing factor in thrombosis on biomaterials. Using an in vitro capillary perfusion system, platelet accumulation on glass surfaces, uncoated or precoated with purified bovine collagen or human plasma proteins, was determined in the presence or absence of preadsorbed purified human thrombin. Static adsorption for 15 min at 22° C from solutions of thrombin 100 NIH units (33 μg)/ml gave surface concentrations in the range 0.019-0.101 μg/cm2. Protein coated capillaries, thrombin treated or untreated, were perfused for 2 min at 37° C with suspensions of washed 111In-labeled human platelets in Tyrode's-albumin buffer containing 40% washed red blood cells, under conditions of controlled, non pulsatile laminar flow (50 s−1 or 2,000 s−1). Platelet accumulation was increased in the presence of surface adsorbed thrombin on uncoated and albumin or fibrinogen coated glass but little affected on fibronectin or collagen coated glass. On von Willebrand factor (vWF) coated glass, thrombin enhancement was observed only at high shear forces. In experiments using antibodies against human platelet α-granule proteins, thrombin stimulated platelet deposition in uncoated glass capillaries was inhibited at 2,000 s−1 by anti-vWF and to a lesser extent by anti-fibrinogen but not by antithrombospondin antibodies.


Sign in / Sign up

Export Citation Format

Share Document