drug efficiency
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 36)

H-INDEX

13
(FIVE YEARS 2)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Hai Xin ◽  
Sina Naficy

Breast cancer is the most common and biggest health threat for women. There is an urgent need to develop novel breast cancer therapies to overcome the shortcomings of conventional surgery and chemotherapy, which include poor drug efficiency, damage to normal tissues, and increased side effects. Drug delivery systems based on injectable hydrogels have recently gained remarkable attention, as they offer encouraging solutions for localized, targeted, and controlled drug release to the tumor site. Such systems have great potential for improving drug efficiency and reducing the side effects caused by long-term exposure to chemotherapy. The present review aims to provide a critical analysis of the latest developments in the application of drug delivery systems using stimuli-responsive injectable hydrogels for breast cancer treatment. The focus is on discussing how such hydrogel systems enhance treatment efficacy and incorporate multiple breast cancer therapies into one system, in response to multiple stimuli, including temperature, pH, photo-, magnetic field, and glutathione. The present work also features a brief outline of the recent progress in the use of tough hydrogels. As the breast undergoes significant physical stress and movement during sporting and daily activities, it is important for drug delivery hydrogels to have sufficient mechanical toughness to maintain structural integrity for a desired period of time.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4461
Author(s):  
Cătălina Anișoara Peptu ◽  
Elena Simona Băcăiță ◽  
Corina-Lenuta Savin (Logigan) ◽  
Marian Luțcanu ◽  
Maricel Agop

New hydrogels films crosslinked with epichlorohydrin were prepared based on alginates and carboxymethyl cellulose with properties that recommend them as potential drug delivery systems (e.g., biocompatibility, low toxicity, non-immunogenicity, hemostatic activity and the ability to absorb large amounts of water). The characterization of their structural, morphological, swelling capacity, loading/release and drug efficiency traits proved that these new hydrogels are promising materials for controlled drug delivery systems. Further, a new theoretical model, in the framework of Scale Relativity Theory, was built with to offer insights on the release process at the microscopic level and to simplify the analysis of the release process.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zahra Hasanshahi ◽  
Ava Hashempour ◽  
Farzane Ghasabi ◽  
Javad Moayedi ◽  
Zahra Musavi ◽  
...  

Abstract Background NS5A and NS5B proteins of hepatitis C virus (HCV) are the main targets of compounds that directly inhibit HCV infections. However, the emergence of resistance-associated substitutions (RASs) may cause substantial reductions in susceptibility to inhibitors. Methods Viral load and genotyping were determined in eighty-seven naïve HCV-infected patients, and the amplified NS5A and NS5B regions were sequenced by Sanger sequencing. In addition, physicochemical properties, structural features, immune epitopes, and inhibitors-protein interactions of sequences were analyzed using several bioinformatics tools. Results Several amino acid residue changes were found in NS5A and NS5B proteins; however, we did not find any mutations related to resistance to the treatment in NS5B. Different phosphorylation and few glycosylation sites were assessed. Disulfide bonds were identified in both proteins that had a significant effect on the function and structure of HCV proteins. Applying reliable software to predict B-cell epitopes, 3 and 5 regions were found for NS5A and NS5B, respectively, representing a considerable potential to induce the humoral immune system. Docking analysis determined amino acids involved in the interaction of inhibitors and mentioned proteins may not decrease the drug efficiency. Conclusions Strong interactions between inhibitors, NS5A and NS5B proteins and the lack of efficient drug resistance mutations in the analyzed sequences may confirm the remarkable ability of NS5A and NS5B inhibitors to control HCV infection amongst Iranian patients. The results of bioinformatics analysis could unveil all features of both proteins, which can be beneficial for further investigations on HCV drug resistance and designing novel vaccines.


Author(s):  
Mei-Xia Zhao ◽  
Di-Feng Chen ◽  
Xue-Jie Zhao ◽  
Lin-Song Li ◽  
Yong-Fang Liu

Targeted nanocarrier can selectively deliver anti-tumor drugs to cancer sites improving drug efficiency. Accordingly, a targeted nanocarrier (MSN-FA) was synthesized based on folic acid (FA) modified mesoporous silica nanoparticles (MSNs). These loaded with 10-hydroxycamptothecin (HCPT) to obtain the nano-drug MSN-FA@HCPT. These nanocarriers were characterized by transmission electron microscopy (TEM), zeta potential, ultraviolet-visible spectroscopy (UV-Vis), fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). Notably, the nanocarriers were nearly spherical before and after loading HCPT and exhibited good dispersibility. Also, folate receptor (FR) over-expressing HeLa cells and FR deficient HepG2 cells were used to evaluate in vitro cellular uptake and cytotoxicity of MSN-FA@HCPT and MSN@HCPT. Interestingly, FA-modified nanocarriers enhanced the cytotoxicity of HCPT by improving drug targeting to tumor cells. Also, apoptotic and mitochondrial membrane potential (MMP) reducing effects of MSN-FA@HCPT were more prominent than the MSNs without FA modification. MSN-FA@HCPT can be excellent drug carriers with profound biomedical applications.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Haonan Li ◽  
Yalong Wang ◽  
Mengxian Zhang ◽  
Hong Wang ◽  
Along Cui ◽  
...  

AbstractPig and monkey are widely used models for exploration of human diseases and evaluation of drug efficiency and toxicity, but high cost limits their uses. Organoids have been shown to be promising models for drug test as they reasonably preserve tissue structure and functions. However, colonic organoids of pig and monkey are not yet established. Here, we report a culture medium to support the growth of porcine and monkey colonic organoids. Wnt signaling and PGE2 are important for long-term expansion of the organoids, and their withdrawal results in lineage differentiation to mature cells. Furthermore, we observe that porcine colonic organoids are closer to human colonic organoids in terms of drug toxicity response. Successful establishment of porcine and monkey colonic organoids would facilitate the mechanistic investigation of the homeostatic regulation of the intestine of these animals and is useful for drug development and toxicity studies.


2021 ◽  
Vol 28 (4) ◽  
pp. 72-84
Author(s):  
V. N. Antonov ◽  
M. V. Osikov ◽  
G. L. Ignatova ◽  
S. О. Zotov

Background. The coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has swept across countries worldwide. Despite an unprecedented volume of research, few drug therapies have been proved effective. The lack of evidence-based strategies entailed many practical treatments. Hypercoagulability observed in COVID-19 patients has sparked a debate in the medical community on therapeutic value of anticoagulants.Objectives. A review of up-to-date evidence supporting the therapeutic effect of unfractionated and low molecular-weight heparin as anticoagulant in treatment for COVID-19. Methods. Russian-language and foreign literature was mined in the RSCI, Scopus, PubMed, medRxiv and eLibrary databases for the years 2020–2021, with considering selected impactive publications within 1991–2019 as well. The query keywords were COVID-19, heparin [гепарин], hemostasis [гемостаз], thromboembolism [тромбоэмболия]. Peer-reviewed scientific journals received priority. Content and descriptive analytics were used as research tools.Results. The review surveyed 84 literature sources, with 51 articles selected for downstream analysis. We highlight usage of heparin and its fractions in treatment for COVID-19 and preclinical evidence verifying the antiviral and anti-inflammatory properties of heparin and synthetic heparin-like drugs in COVID-19. The known and plausible side effects demanding additional prospective randomised controlled trials on anticoagulant application in COVID-19 are reviewed, with an assessment of oral direct-acting anticoagulant drug efficiency.Conclusion. Drug-based therapies for haemostasis correction in COVID-19 are currently limited. The paucity of evidence warrants heparin usage as a safer therapy in acute COVID-19 compared to oral anticoagulants. However, the balance of its potential benefits vs. risks must be observed. The benefits and risk uncertainty in heparin treatment require randomised clinical trials and further studies to evaluate safety of direct-acting oral anticoagulants after the patient’s discharge in COVID-19.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2756 ◽  
Author(s):  
Naved Azum ◽  
Malik Abdul Rub ◽  
Abdullah M. Asiri

In drug delivery, surfactants are used to reduce side effects and to increase drug efficiency. The present work aimed to study the interaction of diphenhydramine hydrochloride (anti-allergic drug) with TX–45 (non-ionic surfactant) in the absence and presence of ionic liquid (1-hexyl-3-methylimidazolium chloride). The physicochemical parameters were estimated by the surface tension measurement. Various theoretical models (Clint, Rubingh, Motomura, and Maeda) were applied to determine the attractive behavior between drug and surfactant mixtures at the surface and in bulk. The drug and surfactant mixtures exhibit synergistic behavior in the absence and presence of ionic liquid. Several energetic parameters were also estimated with the assistance of regular solution approximation and pseudo phase separation model that indicate micelle formation and adsorption of surfactant at the surface is thermodynamically advantageous. The morphology of pure and mixture of amphiphiles has been estimated by the Tanford and Israelachvili theories. UV-visible spectroscopy was used to quantify the attractive behavior of the drug with surfactant with the help of a binding constant (K).


Author(s):  
Mukesh Madanan ◽  
Biju T. Sayed ◽  
Nurul Akhmal Mohd Zulkefli ◽  
Nitha C. Velayudhan

In the field of biomedicine, drug discovery is the cycle by which new and upcoming medicines are tested and invented to cure ailments. Drug discovery and improvement is an extensive, complex, and exorbitant cycle, settled in with a serious extent of vulnerability that a drug will really be successful or not. Developing new drugs have several challenges to enrich the current field of biomedicine. Among these ultimatums, predicting the reaction of the cell line to the injected or consumed drug is a significant point and this can minimize the cost of drug discovery in sophisticated fashion with a stress on the minimum computational time. Herein, the paper proposes a deep neural network structure as the Convolutional Neural Network (CNN) to detain the gene expression features of the cell line and then use the resulting abstract features as the input data of the XGBoost for drug response prediction. Dataset constituting previously identified molecular features of cancers associated to anti-cancer drugs are used for comparison with existing methods and proposed Hybrid CNNXGB model. The results evidently depicted that the predicted model can attain considerable enhanced performance in the prediction accuracy of drug efficiency.


2021 ◽  
Vol 10 ◽  
pp. 100087
Author(s):  
Aaron G. Poth ◽  
Francis C.K. Chiu ◽  
Sofie Stalmans ◽  
Brett R. Hamilton ◽  
Yen-Hua Huang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 792
Author(s):  
Natalie Heinen ◽  
Mara Klöhn ◽  
Eike Steinmann ◽  
Stephanie Pfaender

SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.


Sign in / Sign up

Export Citation Format

Share Document