scholarly journals Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups

2015 ◽  
Vol 78 ◽  
pp. 45-52 ◽  
Author(s):  
Anna Unt ◽  
Ilkka Poutiainen ◽  
Antti Salminen
2021 ◽  
Vol 5 (3) ◽  
pp. 72
Author(s):  
Rohit Kshirsagar ◽  
Steve Jones ◽  
Jonathan Lawrence ◽  
Jamil Kanfoud

Tungsten inert gas (TIG) welding of austenitic stainless steels is a critical process used in industries. Several properties of the welds must be controlled depending on the application. These properties, which include the geometrical, mechanical and microstructural features, can be modified through an appropriate composition of shielding gas. Researchers have studied the effects of the addition of nitrogen through the shielding gas; however, due to limited amount of experimental data, many of the interaction effects are not yet reported. In this study, welds were made homogeneously as well as heterogeneously with various concentrations of nitrogen added through the shielding gas. The gas compositions used were 99.99%Ar (pure), 2.5% N2 + Ar, 5% N2 + Ar and 10% N2 + Ar. Additionally, the welding process parameters were varied to understand different interaction effects between the shielding gas chemistry and the process variables such as filler wire feed rate, welding current, etc. Strong interactions were observed in the case of heterogeneous welds between the gas composition and the filler wire feed rate, with the penetration depth increasing by nearly 30% with the addition of 10% nitrogen in the shielding gas. The interactions were found to influence the bead geometry, which, in turn, had an effect on the mechanical properties as well as the fatigue life of the welds. A nearly 15% increase in the tensile strength of the samples was observed when using 10% nitrogen in the shielding gas, which also translated to a similar increase in the fatigue life.


2019 ◽  
Vol 822 ◽  
pp. 431-437 ◽  
Author(s):  
D.V. Mukin ◽  
Sergei Yu. Ivanov ◽  
Ekaterina A. Valdaitseva ◽  
Gleb A. Turichin ◽  
Alexander E. Beniash

Additive technologies, in particular, wire-feed laser deposition, can significantly reduce the production cycle of manufacturing large-sized parts or parts of complex shape due to partial or complete elimination of technological operations such as casting, machining and welding. The aim of the work is to develop an analytical model of heating and melting of the filler wire during wire-feed laser deposition. The heat conduction problem was solved by the functional-analytical methods. The practical effectiveness of the functional-analytical methods with respect to computational time is several orders of magnitude higher than numerical ones. Obtained analytical solution made it possible to determine the temperature field for heat flux arbitrarily distributed on the filler wire surface. It is established that at a higher feed rate, the wire tip is completely melted at a greater distance from the laser axis. The shape of the melting surface also depends on the feed rate. At a slow feed rate, a more uniform heating of the wire over the cross section occurs. The melting surface has a small angle of inclination.


2012 ◽  
Vol 706-709 ◽  
pp. 2998-3003 ◽  
Author(s):  
Young Whan Park ◽  
Dong Yun Kim

In this paper laser welding AA5182 of aluminum alloy with AA5356 filler wire were performed with respect to laser power, welding speed, and wire feed rate. The experiments showed that the tensile strength of the weld was higher than that of the base material under sufficient heat input conditions. A genetic algorithm was used to optimize process parameters which were the laser power, welding speed, and wire feed rate. To do that, a fitness function was formulated, taking into account weldability and productivity. A factor for the weldabilty used tensile strength estimation model which was made by neural network, and as the productivity, welding speed, and wire feed rate were used. Weld monitoring system for aluminum laser welding with filler wire was constructed through the optical sensors to measure the plasma light intensity. Relationship between monitoring signal and plasma and keyhole behavior according to welding condition was analyzed and it was found that sensor signal could express the information for weld quality. Weld quality estimation algorithm was formulated fuzzy multi feature pattern recognition algorithm using the monitoring signals. Quality prediction system was also developed to apply this algorithm to production line.


Author(s):  
Peter Kayode Farayibi

Laser deposition is an advanced manufacturing technology capable of enhancing service life of engineering components by hard-facing their functional surfaces. There are quite a number of parameters involved in the process and also desirable output characteristics. These output characteristics are often independently optimised and which may lead to poor outcome for other characteristics, hence the need for multi-objective optimisation of all the output characteristics. In this study, a laser deposition of Ti-6Al-4V wire and tungsten carbide powder was made on a Ti-6Al-4V substrate with a view to achieve a metallurgical bonded metal matrix composite on the substrate. Single clads were deposited with a desire to optimise the composite clad characteristics (height, width and reinforcement fraction) for the purpose of surface coating. Processing parameters (laser power, traverse speed, wire feed rate, powder feed rate) were varied, the experiment was planned using Taguchi method and output characteristics were analysed using principal component analysis approach. The results indicated that the parameters required for optimised clad height, width, and reinforcement fraction necessary for surface coating is laser power of 1800 W, traverse speed of 200 mm/min, wire feed rate 700 mm/min and powder feed rate of 30 g/min. The powder feed rate was found to most significantly contribute 43.99%, followed by traverse speed 39.77%, laser power 15.87% with wire feed rate having the least contribution towards the multi-objective optimisation. Confirmation results showed that clad width and reinforcement fraction were significantly improved by the optimised parameters. The multi-objective optimisation procedure is a useful tool necessary to identify the process factors required to enhance output characteristics in laser processing.


2019 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
Villads Schultz

Beam oscillation in laser material processing makes it possible to influence process behavior in terms of energy distribution, stability, melt pool dynamics and solidification. Within the setup presented here, the beam is oscillated transverse to the welding direction, and the filler wire is fed to the melt pool of a butt joint with an air gap. One advantage of this setup is the large gap bridging ability. Certain parameter sets lead to the so-called buttonhole welding method, which allows laser welding of smooth and nearly ripple-free seams. Observations showed a transition area between conventional keyhole and buttonhole welding in which the process is destabilized. Welds made with parameter sets from this area contain critical seam defects. Welding experiments with high-speed video recording and a simplified analytical model about the wire-beam interaction have helped to elucidate the mechanisms behind this. EN AW-6082 sheet material in 1.5 mm thickness and ML 4043 filler wire with 1.2 mm diameter were used. The investigations lead to the conclusion that partially melted wire segments result at certain parameter relations which hinder the formation of a buttonhole. If these segments are prevented, buttonhole welding occurs. In the transition area, these segments are very small and can lead to the detachment of a buttonhole, resulting in the named seam defects.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3470 ◽  
Author(s):  
Vivek Aggarwal ◽  
Catalin Iulian Pruncu ◽  
Jujhar Singh ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov

Monel K-500, a nickel–copper based alloy, is a very hard and tough material. Machining of such hard and tough materials always becomes a challenge for industry and this has been resolved by wire electric discharge machining (WEDM), a popular non-conventional machining method used for machining tough and hard materials having complex shapes. For the first time reported in this present research work is an experimental investigation executed on Ni-27Cu-3.15Al-2Fe-1.5Mn based superalloy using WEDM to model cutting rate (CR) and surface roughness (SR) using response surface methodology (RSM). The process parameters have been selected as pulse-on time, pulse-off time, spark-gap voltage and wire-feed rate. Experiments have been planned according to the central composite design (CCD). The results show that pulse-on time has a direct effect on CR while the pulse-off time has a reverse effect. The CR increases as pulse-on time increases, and decreases as pulse-off time increases. SR increases as pulse-on time increases, and decreases as pulse-off time increases. Furthermore, increase in spark-gap voltage decreases CR and SR both. The wire feed-rate has a negligible effect for both the response parameters. The optimized values of CR and SR achieved through multi-response optimization are 2.48 mm/min and 2.12 µm, respectively.


Sign in / Sign up

Export Citation Format

Share Document