scholarly journals Testing of New Materials and Computer Aided Optimization of Laser Beam Welding of High-Strength Steels

2015 ◽  
Vol 78 ◽  
pp. 255-264 ◽  
Author(s):  
M. Sokolov ◽  
A. Salminen ◽  
E.I. Khlusova ◽  
M.M. Pronin ◽  
M. Golubeva ◽  
...  
2007 ◽  
Vol 344 ◽  
pp. 723-730 ◽  
Author(s):  
H. Haferkamp ◽  
O. Meier ◽  
K. Harley

With the regard to the development of modern car bodies the focus lies on low production costs, environmental sustainability and high security standards. In order to meet these requirements the weight of modern car bodies has to be reduced consistently. Amongst other things, this becomes possible by the use of new high and ultra high strength steels. These materials are characterised by their high strength, good ductility and a high absorption capacity. In addition they have a lower density in comparison to other steels. TRIP and TWIP steel belong to these high and ultra high strength steels as well as iron-manganese steel. The development of new materials also puts new demands on the joining technologies used for producing semi finished products and parts of car bodies. Due to its high flexibility, its good automation and the minor influence on the work piece, laser beam welding is an established procedure in the automotive series production. The high cooling rates in combination with a carbon equivalent of the new materials which is usually higher then 0.4% lead to a martensitic solidification of the weld seam. Martensite is characterized by its low ductility and thus affects the forming capability as well as the absorption capacity of the welded parts. In order to avoid this effect a new process has been developed within the scope of the collaborative research program 362 (SFB 362, 1993-2005) at the Laser Zentrum Hannover. Using that process the weld seam structure is inductively annealed directly after the welding process. Experiments with high strength steel like TRIP700 and H320LA have shown that the tempering leads to an increase of ductility. The process is suitable for butt joints and overlap joints and is to be transferred into industrial usage within the scope of the project “Laser Beam Welding of Car Body Parts Made of High and Ultra High Strength Steel”. Based on the results obtained in the SFB 362 continuous investigations will be made in order to qualify the process for boron alloyed steel and iron-manganese steel.


2020 ◽  
pp. 91-97
Author(s):  
Lechosław Tuz ◽  
Krzysztof Sulikowski

The paper presents the evaluation of weldability of unalloyed high strength heat-treated steels using of a laser beam welding robotic station. The key factors and properties affecting the usability of the aforesaid welding technology when welding the above-named steels were identified on the basis of the assessment of the microstructure and the measurements of hardness distribution in the related butt welded joints.


Procedia CIRP ◽  
2018 ◽  
Vol 74 ◽  
pp. 470-474 ◽  
Author(s):  
Vincent Mann ◽  
Konstantin Hofmann ◽  
Kerstin Schaumberger ◽  
Tobias Weigert ◽  
Stephan Schuster ◽  
...  

2021 ◽  
pp. 141-148
Author(s):  
P. V. S. Lakshminarayana ◽  
Jai Prakash Gautam ◽  
P. Mastanaiah ◽  
G. Madhusudan Reddy ◽  
K. Bhanu Sankara Rao

2020 ◽  
Vol 326 ◽  
pp. 08005
Author(s):  
Mete Demirorer ◽  
Wojciech Suder ◽  
Supriyo Ganguly ◽  
Simon Hogg ◽  
Hassam Naeem

An innovative process design, to avoid thermal degradation during autogenous fusion welding of high strength AA 2024-T4 alloy, based on laser beam welding, is being developed. A series of instrumented laser welds in 2 mm thick AA 2024-T4 alloys were made with different processing conditions resulting in different thermal profiles and cooling rates. The welds were examined under SEM, TEM and LOM, and subjected to micro-hardness examination. This allowed us to understand the influence of cooling rate, peak temperature, and thermal cycle on the growth of precipitates, and related degradation in the weld and heat affected area, evident as softening. Although laser beam welding allows significant reduction of heat input, and higher cooling rates, as compared to other high heat input welding processes, this was found insufficient to completely supress coarsening of precipitate in HAZ. To understand the required range of thermal cycles, additional dilatometry tests were carried out using the same base material to understand the time-temperature relationship of precipitate formation. The results were used to design a novel laser welding process with enhanced cooling, such as with copper backing bar and cryogenic cooling.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


Sign in / Sign up

Export Citation Format

Share Document