scholarly journals Decrypting molecular mechanism insight of Phyllanthus emblica L. fruit in the treatment of type 2 diabetes mellitus by network pharmacology

2021 ◽  
pp. 100144
Author(s):  
Helal Uddin Chowdhury ◽  
Md Adnan ◽  
Ki Kwang Oh ◽  
Dong Ha Cho
2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Musri Musman ◽  
Mauli Zakia ◽  
Ratu Fazlia Inda Rahmayani ◽  
Erlidawati Erlidawati ◽  
Safrida Safrida

Abstract Background Ethnobotany knowledge in a community has shaped local wisdom in utilizing plants to treat diseases, such as the use of Malaka (Phyllanthus emblica) flesh to treat type 2 diabetes. This study presented evidence that the phenolic extract of the Malaka flesh could reduce blood sugar levels in the diabetic induced rats. Methods The phenolic extract of the P. emblica was administrated to the glucose-induced rats of the Wistar strain Rattus norvegicus for 14 days of treatment where the Metformin was used as a positive control. The data generated were analyzed by the two-way ANOVA Software related to the blood glucose level and by SAS Software related to the histopathological studies at a significant 95% confidence. Results The phenolic extract with concentrations of 100 and 200 mg/kg body weight could reduce blood glucose levels in diabetic rats. The post hoc Dunnet test showed that the administration of the extract to the rats with a concentration of 100 mg/kg body weight demonstrated a very significant decrease in blood glucose levels and repaired damaged cells better than administering the extract at a concentration of 200 mg/kg weight body. Conclusion The evidence indicated that the phenolic extract of the Malaka flesh can be utilized as anti type 2 Diabetes mellitus without damaging other organs.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guozhen Yuan ◽  
Shuai Shi ◽  
Qiulei Jia ◽  
Jingjing Shi ◽  
Shuqing Shi ◽  
...  

Rapid increases in metabolic disorders, such as type 2 diabetes mellitus (T2DM) and hyperlipidemia, are becoming a substantial challenge to worldwide public health. Traditional Chinese medicine has a long history and abundant experience in the treatment of diabetes and hyperlipidemia, and Puerariae lobatae Radix (known as Gegen in Chinese) is one of the most prevalent Chinese herbs applied to treat these diseases. The underlying mechanism by which Gegen simultaneously treats diabetes and hyperlipidemia, however, has not been clearly elucidated to date. Therefore, we systematically explored the potential mechanism of Gegen in the treatment of T2DM complicated with hyperlipidemia based on network pharmacology. We screened the potential targets of Gegen, T2DM, and hyperlipidemia in several online databases. Then, the hub targets were analyzed by performing protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays, and finally, the complicated connections among compounds, targets, and pathways were visualized in Cytoscape. We found that isoflavones, including daidzein, genistein, and puerarin, as well as β-sitosterol, are the key active ingredients of Gegen responsible for its antidiabetic and antihyperlipidemia effects, which mainly target AKR1B1, EGFR, ESR, TNF, NOS3, MAPK3, PPAR, CYP19A1, INS, IL6, and SORD and multiple pathways, such as the PI3K-Akt signaling pathway; the AGE-RAGE signaling pathway in diabetic complications, fluid shear stress, and atherosclerosis; the PPAR signaling pathway; insulin resistance; the HIF-1 signaling pathway; the TNF signaling pathway; and others. These active ingredients also target multiple biological processes, including the regulation of glucose and lipid metabolism, the maintenance of metabolic homeostasis, and anti-inflammatory and antioxidant pathways. In conclusion, Gegen is a promising therapeutic phytomedicine for T2DM with hyperlipidemia that targets multiple proteins, biological processes, and pathways.


2020 ◽  
Author(s):  
Mingjun Yang ◽  
Boni Song ◽  
Zhitong Bing ◽  
Juxiang Liu ◽  
Rui Li ◽  
...  

Abstract Background: Type 2 Diabetes Mellitus(T2DM) is an endocrine disease that caused mainly by insulin resistance (IR) and β cell dysfunction. The incidence of T2DM is quite high in the worldwide. To explore the molecular mechanism of Jinqi Jiangtang Tablet(JJT) in treating of T2DM based on Network Pharmacology. Methods: The active compounds, targets of three Traditional Chinese medicines in JJT were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database and Uniprot database; The targets of T2DM were screened through the Drugbank database; The compound-target network was constructed via the Cytoscape 3.7.2 software and used the built-in Network analyzer to analyze and select the key active compounds; The overlapping targets of drug and disease targets were gained by the VENNY online tool and the targets were built by STRING website to select the key genes; Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed on the potential targets using DAVID6.8 online tool to study the mechanism of overlapping targets. Via Systems Dock platform to validate the interaction between compound and targets Results: Twenty-five active compounds of JJT were screened, 101 drug targets, 142 disease targets and twenty-one overlapping targets. GO enrichment analysis showed that the biological processes (BP)mainly included the blood circulation ,etc. Cell composition(CC) mainly affected the integral component of plasma membrane, etc. Molecular functions(MF) mainly involved alpha-adrenergic receptor activity, etc. KEGG pathway analysis showed that there were twelve pathways related to T2DM, among which PPAR signaling pathway was related to T2DM mostly. RXRA is one of key targets of JJT and berberine performed well. Conclusions: This study revealed the mechanism of JJT in treatment of T2DM preliminarily and supplied a further foundation for studying its mechanism.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Beida Ren ◽  
Ling Tan ◽  
Yiliang Xiong ◽  
Wenting Ji ◽  
Jie Mu ◽  
...  

Background. The incidence of type 2 diabetes mellitus (T2DM) has increased year by year, which not only seriously affects people’s quality of life, but also imposes a heavy economic burden on the family, society, and country. Currently, the pathogenesis, diagnosis, and treatment of T2DM are still unclear. Therefore, exploration of a precise multitarget treatment strategy is urgent. Here, we attempt to screen out the active components, effective targets, and functional pathways of therapeutic drugs through network pharmacology with taking advantages of traditional Chinese medicine (TCM) formulas for multitarget holistic treatment of diseases to clarify the potential therapeutic mechanism of TCM formulas and provide a systematic and clear thought for T2DM treatment. Methods. First, we screened the active components of Da-Chai-Hu Decoction (DCHD) by absorption, distribution, metabolism, excretion, and toxicity (ADME/T) calculation. Second, we predicted and screened the active components of DCHD and its therapeutic targets for T2DM relying on the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP database) and Text Mining Tool (GoPubMed database), while using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to obtain T2DM targets. Third, we constructed a network of the active component-target, target-pathway of DCHD using Cytoscape software (http://cytoscape.org/,ver.3.5.1) and then analyzed gene function, related biological processes, and signal pathways through the DAVID database. Results. We screened 77 active components from 1278 DCHD components and 116 effective targets from 253 ones. After matching the targets of T2DM, we obtained 38 important targets and 7 core targets were selected through further analysis. Through enrichment analysis, we found that these important targets were mainly involved in many biological processes such as oxidative stress, inflammatory reaction, and apoptosis. After analyzing the relevant pathways, the synthetic pathway for the treatment of T2DM was obtained, which provided a diagnosis-treatment idea for DCHD in the treatment of T2DM. Conclusions. This article reveals the mechanism of DCHD in the treatment of T2DM related to inflammatory response and apoptosis through network pharmacology, which lays a foundation for further elucidation of drugs effective targets.


Sign in / Sign up

Export Citation Format

Share Document