Heat and mass transfer in a vertical double passage channel filled with electrically conducting fluid

2017 ◽  
Vol 465 ◽  
pp. 195-216 ◽  
Author(s):  
Jawali C. Umavathi ◽  
J. Prathap Kumar ◽  
Mikhail A. Sheremet
Author(s):  
Madduleti Nagasasikala ◽  
Bommanna Lavanya

In the present document we inspect the deportation study of heat and mass transfer flow of a viscous electrically conducting fluid in a vertical wavy channel under the influence of an inclined magnetic fluid with heat generating sources. The walls of the channels are perpetuated at constant temperature and concentration. The equations reign over the flow heat and concentration are solved by employing perturbation technique with a slope d of the wavy wall. The velocity, temperature and concentration distributions are investigated for a different value of Grashof number Hartmann number, Buoyancy ratio etc. The rate of heat and mass transfer are numerically estimated for a different variation of the governing parameters. It is found that higher the Lorentz force lesser the axial velocity in the flow region. An increase in the Hall parameter (m) enhances the axial velocity.


2003 ◽  
Vol 58 (11) ◽  
pp. 601-611 ◽  
Author(s):  
N. T. Eldabe ◽  
A. G. El-Sakka ◽  
Ashraf Fouad

Numerical solutions of a set of non-linear partial differential equations are investigated. We obtained the velocity distribution of a conducting fluid flowing over an infinite solid surface in the presence of an uniform magnetic field and internal heat generation. The temperature and concentration distributions of the fluid are studied as well as the skin-friction, rate of mass transfer and local wall heat flux. The effect of the parameters of the problem on these distributions is illustrated graphically.


2014 ◽  
Vol 541-542 ◽  
pp. 722-726
Author(s):  
Jun Ming Hou ◽  
De Xu Yang ◽  
Ke Jia Wu

In this paper the drying process of ginkgo biloba is discussed. The process combined effect of convective Heat and mass transfer on hydromagnetic electrically conducting viscous, how to improve the ability of drying is an important problem. The heat transmission for drying process is discussed. The parameter of drying process is determined. The ginkgo biloba drying machine is developed and the key part of drying machine is designed. The whole drying machine is developed, which can enhance the ability of medical industry. The study can help the Optimization of drying process and the level of the ginkgo biloba drying.


2014 ◽  
Vol 92 (11) ◽  
pp. 1387-1396 ◽  
Author(s):  
J.C. Umavathi ◽  
A.J. Chamkha

In this study, the effects of viscous and Ohmic dissipation in steady, laminar, mixed, convection heat transfer for an electrically conducting fluid flowing through a vertical channel is investigated in both aiding and opposing buoyancy situations. The plates exchange heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. First, the simpler cases of either negligible Brinkman number or negligible Grashof number are addressed with the help of analytical solutions. The combined effects of buoyancy forces and viscous dissipation are analyzed using a perturbation series method valid for small values of the perturbation parameter. To relax the conditions on the perturbation parameter, the governing equations are also evaluated numerically by a shooting technique that uses the classical explicit Runge–Kutta method of four slopes as an integration scheme and the Newton–Raphson method as a correction scheme. In the examined cases of velocity and temperature fields, the Nusselt numbers at both the walls and the average velocity are explored. It is found that the velocity profiles for an open circuit (E > 0 or E < 0) lie in between the short circuit (E = 0). The graphical results illustrating the effects of various parameters on the flow as well as the average velocity and Nusselt numbers are presented for open and short circuits. In the absence of electric field load parameter and Hartmann number, the results agree with Zanchini (Int. J. Heat Mass Transfer, 41, 3949 (1998)). Further, the analytical and numerical solutions agree very well for small values of the perturbation parameter.


Sign in / Sign up

Export Citation Format

Share Document