Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

2018 ◽  
Vol 501 ◽  
pp. 276-292 ◽  
Author(s):  
Yan Wang ◽  
Daqing Jiang ◽  
Ahmed Alsaedi ◽  
Tasawar Hayat
1975 ◽  
Vol 61 (5) ◽  
pp. 494-494
Author(s):  
M. Pierotti

2019 ◽  
Vol 117 (1) ◽  
pp. 426-431
Author(s):  
Chih-Wei Lin ◽  
Jia Xie ◽  
Ding Zhang ◽  
Kyung Ho Han ◽  
Geramie Grande ◽  
...  

Herein we present a concept in cancer where an immune response is detrimental rather than helpful. In the cancer setting, the immune system is generally considered to be helpful in curtailing the initiation and progression of tumors. In this work we show that a patient’s immune response to their tumor can, in fact, either enhance or inhibit tumor cell growth. Two closely related autoantibodies to the growth factor receptor TrkB were isolated from cancer patients’ B cells. Although highly similar in sequence, one antibody was an agonist while the other was an antagonist. The agonist antibody was shown to increase breast cancer cell growth both in vitro and in vivo, whereas the antagonist antibody inhibited growth. From a mechanistic point of view, we showed that binding of the agonist antibody to the TrkB receptor was functional in that it initiated downstream signaling identical to its natural growth factor ligand, brain-derived neurotrophic factor (BDNF). Our study shows that individual autoantibodies may play a role in cancer patients.


2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Meeyoung Park ◽  
Chae Hwa Kwon ◽  
Hong Koo Ha ◽  
Miyeun Han ◽  
Sang Heon Song

Abstract Background Acute kidney injury (AKI) is defined as a sudden event of kidney failure or kidney damage within a short period. Ischemia-reperfusion injury (IRI) is a critical factor associated with severe AKI and end-stage kidney disease (ESKD). However, the biological mechanisms underlying ischemia and reperfusion are incompletely understood, owing to the complexity of these pathophysiological processes. We aimed to investigate the key biological pathways individually affected by ischemia and reperfusion at the transcriptome level. Results We analyzed the steady-state gene expression pattern of human kidney tissues from normal (pre-ischemia), ischemia, and reperfusion conditions using RNA-sequencing. Conventional differential expression and self-organizing map (SOM) clustering analyses followed by pathway analysis were performed. Differential expression analysis revealed the metabolic pathways dysregulated in ischemia. Cellular assembly, development and migration, and immune response-related pathways were dysregulated in reperfusion. SOM clustering analysis highlighted the ischemia-mediated significant dysregulation in metabolism, apoptosis, and fibrosis-related pathways, while cell growth, migration, and immune response-related pathways were highly dysregulated by reperfusion after ischemia. The expression of pro-apoptotic genes and death receptors was downregulated during ischemia, indicating the existence of a protective mechanism against ischemic injury. Reperfusion induced alterations in the expression of the genes associated with immune response such as inflammasome and antigen representing genes. Further, the genes related to cell growth and migration, such as AKT, KRAS, and those related to Rho signaling, were downregulated, suggestive of injury responses during reperfusion. Semaphorin 4D and plexin B1 levels were also downregulated. Conclusions We show that specific biological pathways were distinctively involved in ischemia and reperfusion during IRI, indicating that condition-specific therapeutic strategies may be imperative to prevent severe kidney damage after IRI in the clinical setting.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Christopher M Borges ◽  
Kevin Wasko ◽  
Jared M Nasser ◽  
Kelly Donahue ◽  
Amanda Pfautz ◽  
...  

Natural killer (NK) cells distinguish tumor from healthy tissue via multiple mechanisms, including recognition of stress ligands and loss of MHC class I expression. For example, KIR mismatching enables allogenic NK cells to respond to MHC positive tumors in a similar manner to MHC negative tumors, making allogeneic NK cell therapy a promising approach for broad oncology indications. Accordingly, allogenic human HD-NK cells, including gene-modified cells, have demonstrated an impressive safety and efficacy profile when administered to patients with advanced hematologic malignancies. However, effector function of allogeneic NK cells can be diminished by the lack of functional persistence, as well as tumor-intrinsic immunosuppressive mechanisms, such as production of TGF-β. To this end, we developed a next-generation allogeneic NK cell therapy using CRISPR-Cas12a gene editing to enhance NK cell function through knockout of the genes CISH and TGFBR2. Both single and simultaneous targeting (DKO) of TGFBR2 and CISH in NK cells using CRISPR-Cas12a produced in/dels at both targets in greater than 80% of NK cells, with greater than 90% of edited NK cells viable at 72 hours post-editing. Importantly, we find that DKO NK cells do not phosphorylate the SMAD2/3 protein downstream of the TGF-b receptor complex and demonstrate increased phosphorylation of pSTAT3 and pSTAT5 upon IL-15 stimulation, consistent with protein level knockout of TGFBR2 and CISH. To determine whether DKO NK cells exhibited superior function relative to control NK cells, we first measured the ability of DKO NK cells to kill Nalm6 cells (adult B cell ALL) relative to unedited control NK cells. We find that in the presence of exogenous TGF-b, DKO NK cells demonstrate improved cytotoxicity against Nalm6 tumor targets by delaying tumor re-growth in comparison to control NK cells. To better characterize the ability of DKO NK cells to kill tumor cells, we developed an in vitro serial killing assay. In this long-duration assay, up to 30 days, control and DKO NK cells (grown in the presence of IL-15) were challenged every 48 hours with a new bolus of Nalm6 tumor targets. Both DKO and unedited NK cells control Nalm6 target cell growth for greater than 18 days (9 additions of new Nalm6 target cells), demonstrating a surprising ability for the same NK cells to serially kill new Nalm6 target cells for a prolonged period of time in vitro. We find that DKO NK cells produce higher levels of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay, suggesting that DKO NK cells can continue to produce these inflammatory cytokines even after serial killing. As many tumors, including hematologic malignancies, have high concentrations of TGF-β in their microenvironments, we next tested the ability of DKO NK cells to control the growth of Nalm6 cells in our serial killing assay in the presence of TGF-b. 10ng/mL TGF-β was added at the start of the assay as well as at each addition of new Nalm6 target cells. We observed that control NK cells fail to restrict Nalm6 target cell growth beyond 4 days (after 1 addition of new Nalm6 target cells) whereas DKO NK cells control Nalm6 target cell growth for greater than 18 days (after 9 additions of new Nalm6 target cells). Similar to the serial killing assay without TGF-b, we find that DKO NK cells produce higher concentrations of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay. Broadening our repertoire of target cells beyond B cell malignancies is now in progress, including the AML-like cell lines HL-60 and THP-1, the multiple myeloma cell line RPMI 8226, and various solid tumor targets. In summary, using CRISPR-Cas12a we demonstrated highly efficient gene editing of primary human NK cells at two unique targets designed to augment NK cell anti-tumor activity across a variety of malignancies. Most significantly, we demonstrate sustained anti-tumor serial-killing activity in the presence of the potent immunosuppressive cytokine TGF-β. Together, the increased overall effector function of CISH/TGFBR2 DKO primary human NK cells and their ability to serial kill, support their development as a potent allogeneic cell-based medicine for cancer. This potential medicine, termed EDIT-201, is being advanced to clinical study. Disclosures Borges: Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wasko:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Nasser:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Donahue:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Pfautz:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Antony:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Leary:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Sexton:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Morgan:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wong:Editas Medicine: Current Employment, Current equity holder in publicly-traded company.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2292
Author(s):  
Elizabeth R. Duke ◽  
Florencia A. T. Boshier ◽  
Michael Boeckh ◽  
Joshua T. Schiffer ◽  
E. Fabian Cardozo-Ojeda

Cytomegalovirus (CMV) causes significant morbidity and mortality in recipients of allogeneic hematopoietic cell transplantation (HCT). Whereas insights gained from mathematical modeling of other chronic viral infections such as HIV, hepatitis C, and herpes simplex virus-2 have aided in optimizing therapy, previous CMV modeling has been hindered by a lack of comprehensive quantitative PCR viral load data from untreated episodes of viremia in HCT recipients. We performed quantitative CMV DNA PCR on stored, frozen serum samples from the placebo group of participants in a historic randomized controlled trial of ganciclovir for the early treatment of CMV infection in bone marrow transplant recipients. We developed four main ordinary differential Equation mathematical models and used model selection theory to choose between 38 competing versions of these models. Models were fit using a population, nonlinear, mixed-effects approach. We found that CMV kinetics from untreated HCT recipients are highly variable. The models that recapitulated the observed patterns most parsimoniously included explicit, dynamic immune cell compartments and did not include dynamic target cell compartments, consistent with the large number of tissue and cell types that CMV infects. In addition, in our best-fitting models, viral clearance was extremely slow, suggesting severe impairment of the immune response after HCT. Parameters from our best model correlated well with participants’ clinical risk factors and outcomes from the trial, further validating our model. Our models suggest that CMV dynamics in HCT recipients are determined by host immune response rather than target cell limitation in the absence of antiviral treatment.


2019 ◽  
Vol 116 (49) ◽  
pp. 24651-24661 ◽  
Author(s):  
Yi-Wei Tsai ◽  
Hsin-Ho Sung ◽  
Jian-Chiuan Li ◽  
Chun-Yen Yeh ◽  
Pei-Yi Chen ◽  
...  

Secreted exosomal microRNAs (miRNAs) mediate interorgan/tissue communications by modulating target gene expression, thereby regulating developmental and physiological functions. However, the source, route, and function in target cells have not been formally established for specific miRNAs. Here, we show that glial miR-274 non-cell-autonomously modulates the growth of synaptic boutons and tracheal branches. Whereas the precursor form of miR-274 is expressed in glia, the mature form of miR-274 distributes broadly, including in synaptic boutons, muscle cells, and tracheal cells. Mature miR-274 is secreted from glia to the circulating hemolymph as an exosomal cargo, a process requiring ESCRT components in exosome biogenesis and Rab11 and Syx1A in exosome release. We further show that miR-274 can function in the neurons or tracheal cells to modulate the growth of synaptic boutons and tracheal branches, respectively. Also, miR-274 uptake into the target cells by AP-2–dependent mechanisms modulates target cell growth. In the target cells, miR-274 down-regulates Sprouty (Sty) through a targeting sequence at the sty 3′ untranslated region, thereby enhancing MAPK signaling and promoting cell growth. miR-274 expressed in glia of an mir-274 null mutant is released as an exosomal cargo in the circulating hemolymph, and such glial-specific expression resets normal levels of Sty and MAPK signaling and modulates target cell growth. mir-274 mutant larvae are hypersensitive to hypoxia, which is suppressed by miR-274 expression in glia or by increasing tracheal branches. Thus, glia-derived miR-274 coordinates growth of synaptic boutons and tracheal branches to modulate larval hypoxia responses.


2017 ◽  
Vol 145 (3) ◽  
pp. 476-480 ◽  
Author(s):  
Kenneth D. Beaman ◽  
Svetlana Dambaeva ◽  
Gajendra K. Katara ◽  
Arpita Kulshrestha ◽  
Alice Gilman-Sachs

Sign in / Sign up

Export Citation Format

Share Document