scholarly journals Glia-derived exosomal miR-274 targets Sprouty in trachea and synaptic boutons to modulate growth and responses to hypoxia

2019 ◽  
Vol 116 (49) ◽  
pp. 24651-24661 ◽  
Author(s):  
Yi-Wei Tsai ◽  
Hsin-Ho Sung ◽  
Jian-Chiuan Li ◽  
Chun-Yen Yeh ◽  
Pei-Yi Chen ◽  
...  

Secreted exosomal microRNAs (miRNAs) mediate interorgan/tissue communications by modulating target gene expression, thereby regulating developmental and physiological functions. However, the source, route, and function in target cells have not been formally established for specific miRNAs. Here, we show that glial miR-274 non-cell-autonomously modulates the growth of synaptic boutons and tracheal branches. Whereas the precursor form of miR-274 is expressed in glia, the mature form of miR-274 distributes broadly, including in synaptic boutons, muscle cells, and tracheal cells. Mature miR-274 is secreted from glia to the circulating hemolymph as an exosomal cargo, a process requiring ESCRT components in exosome biogenesis and Rab11 and Syx1A in exosome release. We further show that miR-274 can function in the neurons or tracheal cells to modulate the growth of synaptic boutons and tracheal branches, respectively. Also, miR-274 uptake into the target cells by AP-2–dependent mechanisms modulates target cell growth. In the target cells, miR-274 down-regulates Sprouty (Sty) through a targeting sequence at the sty 3′ untranslated region, thereby enhancing MAPK signaling and promoting cell growth. miR-274 expressed in glia of an mir-274 null mutant is released as an exosomal cargo in the circulating hemolymph, and such glial-specific expression resets normal levels of Sty and MAPK signaling and modulates target cell growth. mir-274 mutant larvae are hypersensitive to hypoxia, which is suppressed by miR-274 expression in glia or by increasing tracheal branches. Thus, glia-derived miR-274 coordinates growth of synaptic boutons and tracheal branches to modulate larval hypoxia responses.

2019 ◽  
Author(s):  
Yi-Wei Tsai ◽  
Hsin-Ho Sung ◽  
Jian-Chiuan Li ◽  
Chun-Yen Yeh ◽  
Pei-Yi Chen ◽  
...  

AbstractSecreted exosomal miRNAs mediate inter-organ/tissue communication by downregulating gene expression, thereby modulating developmental and physiological functions. However, the source, route, and function have not been formally established for specific miRNAs. Here, we show that glial miR-274 non-cell autonomously modulates the growth of synaptic boutons and tracheal branches. Whereas precursor miR-274 was expressed in glia, mature miR-274 was secreted. miR-274 secretion to circulating hemolymph was detected in exosomes, a process requiring ESCRT components in exosome biogenesis and Rab11 and Syx1A in exosome release. miR-274 downregulated Sprouty to activate MAPK in synaptic boutons and tracheal branches, thereby promoting their growth. Expression of miR-274 solely in glia of a mir-274 null mutant reset normal levels of Sprouty and MAPK, and hemolymphatic exosomal miR-274. mir-274 mutant larvae were hypersensitive to hypoxia, which was suppressed by increasing tracheal branches. Thus, glia-derived miR-274 coordinates growth of synaptic boutons and tracheal branches to modulate larval hypoxia responses.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Christopher M Borges ◽  
Kevin Wasko ◽  
Jared M Nasser ◽  
Kelly Donahue ◽  
Amanda Pfautz ◽  
...  

Natural killer (NK) cells distinguish tumor from healthy tissue via multiple mechanisms, including recognition of stress ligands and loss of MHC class I expression. For example, KIR mismatching enables allogenic NK cells to respond to MHC positive tumors in a similar manner to MHC negative tumors, making allogeneic NK cell therapy a promising approach for broad oncology indications. Accordingly, allogenic human HD-NK cells, including gene-modified cells, have demonstrated an impressive safety and efficacy profile when administered to patients with advanced hematologic malignancies. However, effector function of allogeneic NK cells can be diminished by the lack of functional persistence, as well as tumor-intrinsic immunosuppressive mechanisms, such as production of TGF-β. To this end, we developed a next-generation allogeneic NK cell therapy using CRISPR-Cas12a gene editing to enhance NK cell function through knockout of the genes CISH and TGFBR2. Both single and simultaneous targeting (DKO) of TGFBR2 and CISH in NK cells using CRISPR-Cas12a produced in/dels at both targets in greater than 80% of NK cells, with greater than 90% of edited NK cells viable at 72 hours post-editing. Importantly, we find that DKO NK cells do not phosphorylate the SMAD2/3 protein downstream of the TGF-b receptor complex and demonstrate increased phosphorylation of pSTAT3 and pSTAT5 upon IL-15 stimulation, consistent with protein level knockout of TGFBR2 and CISH. To determine whether DKO NK cells exhibited superior function relative to control NK cells, we first measured the ability of DKO NK cells to kill Nalm6 cells (adult B cell ALL) relative to unedited control NK cells. We find that in the presence of exogenous TGF-b, DKO NK cells demonstrate improved cytotoxicity against Nalm6 tumor targets by delaying tumor re-growth in comparison to control NK cells. To better characterize the ability of DKO NK cells to kill tumor cells, we developed an in vitro serial killing assay. In this long-duration assay, up to 30 days, control and DKO NK cells (grown in the presence of IL-15) were challenged every 48 hours with a new bolus of Nalm6 tumor targets. Both DKO and unedited NK cells control Nalm6 target cell growth for greater than 18 days (9 additions of new Nalm6 target cells), demonstrating a surprising ability for the same NK cells to serially kill new Nalm6 target cells for a prolonged period of time in vitro. We find that DKO NK cells produce higher levels of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay, suggesting that DKO NK cells can continue to produce these inflammatory cytokines even after serial killing. As many tumors, including hematologic malignancies, have high concentrations of TGF-β in their microenvironments, we next tested the ability of DKO NK cells to control the growth of Nalm6 cells in our serial killing assay in the presence of TGF-b. 10ng/mL TGF-β was added at the start of the assay as well as at each addition of new Nalm6 target cells. We observed that control NK cells fail to restrict Nalm6 target cell growth beyond 4 days (after 1 addition of new Nalm6 target cells) whereas DKO NK cells control Nalm6 target cell growth for greater than 18 days (after 9 additions of new Nalm6 target cells). Similar to the serial killing assay without TGF-b, we find that DKO NK cells produce higher concentrations of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay. Broadening our repertoire of target cells beyond B cell malignancies is now in progress, including the AML-like cell lines HL-60 and THP-1, the multiple myeloma cell line RPMI 8226, and various solid tumor targets. In summary, using CRISPR-Cas12a we demonstrated highly efficient gene editing of primary human NK cells at two unique targets designed to augment NK cell anti-tumor activity across a variety of malignancies. Most significantly, we demonstrate sustained anti-tumor serial-killing activity in the presence of the potent immunosuppressive cytokine TGF-β. Together, the increased overall effector function of CISH/TGFBR2 DKO primary human NK cells and their ability to serial kill, support their development as a potent allogeneic cell-based medicine for cancer. This potential medicine, termed EDIT-201, is being advanced to clinical study. Disclosures Borges: Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wasko:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Nasser:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Donahue:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Pfautz:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Antony:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Leary:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Sexton:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Morgan:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wong:Editas Medicine: Current Employment, Current equity holder in publicly-traded company.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaojun Cao ◽  
Yue Yin ◽  
Xuan Sun ◽  
Jun Han ◽  
Qing peng Sun ◽  
...  

Ash1 is a known H3K36-specific histone demethylase that is required for normal Hox gene expression and fertility inDrosophilaand mammals. However, little is known about the expression and function of the fungal ortholog of Ash1 in phytopathogenic fungusMagnaporthe oryzae. Here we report that MoKMT2H, an Ash1-like protein, is required for conidium germination and virulence in rice. We obtainedMoKMT2Hnull mutant (ΔMoKMT2H) using a target gene replacement strategy. In theΔMoKMT2Hnull mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. TheΔMoKMT2Hmutants showed no defect in vegetative hyphal growth, conidium morphology, conidiation, or disease lesion formation on rice leaves. However, theMoKMT2Hdeletion mutants were delayed for conidium germination and consequently had decreased virulence. Taken together, our results indicated that MoKMT2H plays an important role in conidium germination during appressorium formation in the rice blast fungus and perhaps other pathogenic plant fungi.


2019 ◽  
Author(s):  
Tomasz Janiszewski ◽  
Sonia Kołt ◽  
Dion Kaiserman ◽  
Scott Snipas ◽  
Shuang Li ◽  
...  

AbstractDespite many studies on the cytotoxic protease granzyme B, key aspects of its function remain unexplored due to the lack of selective probes for its activity. In this study, we fully mapped the substrate preferences of GrB using a set of unnatural amino acids, demonstrating previously unknown GrB substrate preferences that we then used to design novel substrate-based inhibitors and a GrB-activatable activity-based probe. We showed that our GrB probes react poorly with caspases, making them ideal for the in-depth analysis of GrB localization and function in cells. With our quenched fluorescence substrate, we determined GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with the GrB attack MDA-MB-231 target cells, and active GrB influences its target cell killing efficiency.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Truong San Phan ◽  
Thomas Brunner

Nuclear receptors control the transcriptional program of target cells and thereby their phenotype and activities. Two complementary studies by Micheals et al. (https://doi.org/10.1084/jem.20201311) and Chan et al. (https://doi.org/10.1084/jem.20200318) published in JEM uncover the cell type–specific expression and role of the nuclear receptors liver X receptors in the regulation of T cell homeostasis and function.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


1993 ◽  
Vol 21 (2) ◽  
pp. 206-209
Author(s):  
Anders H. G. Andrén ◽  
Anders P. Wieslander

Cytotoxicity, measured as inhibition of cell growth of cultured cell lines, is a widely used method for testing the safety of biomaterials and chemicals. One major technical disadvantage with this method is the continuous routine maintenance of the cell lines. We decided to investigate the possibility of storing stock cultures of fibroblasts (L-929) in an ordinary refrigerator as a means of reducing the routine workload. Stock cultures of the mouse fibroblast cell line L-929 were prepared in plastic vials with Eagle's minimum essential medium. The vials were stored in a refrigerator at 4–10°C for periods of 7–31 days. The condition of the cells after storage was determined as cell viability, cell growth and the toxic response to acrylamide, measured as cell growth inhibition. We found that the L-929 cell line can be stored for 2–3, weeks with a viabilty > 90% and a cell growth of about 95%, compared to L-929 cells grown and subcultured in the normal manner. The results also show that the toxic response to acrylamide, using refrigerator stored L-929 cells, corresponds to that of control L-929 cells. We concluded that it is possible to store L-929 cells in a refrigerator for periods of up to 3 weeks and still use the cells for in vitro cytotoxic assays.


2020 ◽  
Vol 18 (1) ◽  
pp. 265-274
Author(s):  
Wei-hong Chen ◽  
Zhen Luo ◽  
Zi-Wan Ning ◽  
Jiao Peng ◽  
Xiao-peng Hu ◽  
...  

AbstractExtracts of Cyclocarya paliurus (CP) leaves, a popular sweet tea, inhibit pancreatic β cell apoptosis and have potent hypoglycemic effects, but the identities of the anti-apoptotic bioactive components are still unknown. In the present study, a method using UPLC-Q-TOF/MS based on serum pharmacochemistry combined with target cell extraction was established to rapidly identify direct-acting pancreatic protectants from CP. After orally administering a set amount of CP extract to rats, blood samples were collected to characterize the components that can be absorbed into the blood using UPLC-Q-TOF/MS. Also, target cells (pancreatic β NIT-1 cells) were incubated with CP extract for 24 hours, and cells were collected to identify the components that can bind to the cells using UPLC-Q-TOF/MS. Finally, to evaluate the protective effect of the bioactive components of CP, MTT and TUNEL assays were performed on treated NIT-1 cell induced by streptozotocin (STZ). Three potential direct-acting pancreatic protectants -- kaempferol, quercetin, quadranoside IV -- were identified, and anti-apoptotic effects of kaempferol and quercetin were confirmed in STZ-induced NIT-1 cells. The findings indicate that this combined approach is a feasible, rapid, and expedient tool for capturing potential direct-acting components from natural products such as those from CP leaves.


Sign in / Sign up

Export Citation Format

Share Document