scholarly journals Control and anti-control of chaos based on the moving largest Lyapunov exponent using reinforcement learning

2021 ◽  
pp. 133068
Author(s):  
Yanyan Han ◽  
Jianpeng Ding ◽  
Lin Du ◽  
Youming Lei
2021 ◽  
Author(s):  
Yanyan Han ◽  
Jianpeng Ding ◽  
Lin Du ◽  
Youming Lei

Abstract In this work, we propose a method of control and anti-control of chaos based on the moving largest Lyapunov exponent using reinforcement learning. In this method, we design a reward function for the reinforcement learning according to the moving largest Lyapunov exponent, which is similar to the moving average but computes the corresponding largest Lyapunov exponent using a recently updated time series with a fixed, short length. We adopt the density peaks-based clustering algorithm to determine a linear region of the average divergence index so that we can obtain the largest Lyapunov exponent of the small data set by fitting the slope of the linear region. We show that the proposed method is fast and easy to implement through controlling and anti-controlling typical systems such as the Henon map and Lorenz system.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.


2007 ◽  
Vol 342-343 ◽  
pp. 581-584
Author(s):  
Byung Young Moon ◽  
Kwon Son ◽  
Jung Hong Park

Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understanding how variations in the gait pattern change over time. Healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Gait pattern is found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650226 ◽  
Author(s):  
Eduardo M. A. M. Mendes ◽  
Erivelton G. Nepomuceno

In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey–Glass system.


2000 ◽  
Vol 11 (5) ◽  
pp. 807-814 ◽  
Author(s):  
Alexey N Pavlov ◽  
Natalia B Janson ◽  
Vadim S Anishchenko ◽  
Vladimir I Gridnev ◽  
Pavel Ya Dovgalevsky

2020 ◽  
Vol 7 (2) ◽  
pp. 65-75
Author(s):  
T. M. Medvedeva ◽  
◽  
A. K. Lüttjohann ◽  
M. V. Sysoeva ◽  
G. van Luijtelaar ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Abigail Ortiz ◽  
Kamil Bradler ◽  
Maxine Mowete ◽  
Stephane MacLean ◽  
Julie Garnham ◽  
...  

Abstract Background Understanding the underlying architecture of mood regulation in bipolar disorder (BD) is important, as we are starting to conceptualize BD as a more complex disorder than one of recurring manic or depressive episodes. Nonlinear techniques are employed to understand and model the behavior of complex systems. Our aim was to assess the underlying nonlinear properties that account for mood and energy fluctuations in patients with BD; and to compare whether these processes were different in healthy controls (HC) and unaffected first-degree relatives (FDR). We used three different nonlinear techniques: Lyapunov exponent, detrended fluctuation analysis and fractal dimension to assess the underlying behavior of mood and energy fluctuations in all groups; and subsequently to assess whether these arise from different processes in each of these groups. Results There was a positive, short-term autocorrelation for both mood and energy series in all three groups. In the mood series, the largest Lyapunov exponent was found in HC (1.84), compared to BD (1.63) and FDR (1.71) groups [F (2, 87) = 8.42, p < 0.005]. A post-hoc Tukey test showed that Lyapunov exponent in HC was significantly higher than both the BD (p = 0.003) and FDR groups (p = 0.03). Similarly, in the energy series, the largest Lyapunov exponent was found in HC (1.85), compared to BD (1.76) and FDR (1.67) [F (2, 87) = 11.02; p < 0.005]. There were no significant differences between groups for the detrended fluctuation analysis or fractal dimension. Conclusions The underlying nature of mood variability is in keeping with that of a chaotic system, which means that fluctuations are generated by deterministic nonlinear process(es) in HC, BD, and FDR. The value of this complex modeling lies in analyzing the nature of the processes involved in mood regulation. It also suggests that the window for episode prediction in BD will be inevitably short.


Sign in / Sign up

Export Citation Format

Share Document