Influence of void density on dislocation mechanisms of void shrinkage in nickel single crystal based on molecular dynamics simulation

Author(s):  
Yanqiu Zhang ◽  
Shuyong Jiang ◽  
Xiaoming Zhu ◽  
Yanan Zhao
Author(s):  
D.S. Kryzhevich ◽  
◽  
A.V. Korchuganov ◽  
K.P. Zolnikov ◽  
◽  
...  

Molecular dynamics simulation of crack propagation peculiarities in a nickel single crystal under uniaxial tension along the cubic direction was carried out. It was found that at room temperature regions with excess atomic volume are formed near the tips of the opening crack. Subsequently nanopores are formed in these areas which then merge with the crack stimulating high-speed opening. It is shown that if dislocations begin to form at the crack tip in a region with an increased atomic volume the crack propagation velocity in this direction significantly decreases.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


Sign in / Sign up

Export Citation Format

Share Document