scholarly journals Asymmetric Andreev resonant state with a magnetic exchange field in spin-triplet superconducting monolayer MoS 2

2018 ◽  
Vol 97 ◽  
pp. 69-74 ◽  
Author(s):  
H. Goudarzi ◽  
M. Khezerlou ◽  
S.F. Ebadzadeh
2017 ◽  
Vol 12 (8) ◽  
pp. 757-762 ◽  
Author(s):  
Chuan Zhao ◽  
Tenzin Norden ◽  
Peiyao Zhang ◽  
Puqin Zhao ◽  
Yingchun Cheng ◽  
...  

1964 ◽  
Vol 11 (3) ◽  
pp. 195-196 ◽  
Author(s):  
M.E. Caspari ◽  
A. Koicki ◽  
S. Koicki ◽  
G.T. Wood

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Sintayehu Mekonnen ◽  
Pooran Singh

We study valley polarization, spin, and valley Hall conductivity in doped monolayer MoS2 considering dopant introduced magnetic exchange field using low energy effective Hamiltonian. We found that dopant introduced magnetic exchange field breaks the time inversion symmetry and decouples the energetically degenerated valleys into nondegenerate. Moreover, the calculated result reveals that, at low temperature, in insulating regime, anomalous Hall conductivity in a single valley and the total valley Hall conductivity are quantized, whereas the total spin Hall conductivity vanishes identically. We also found that the strength of the spin-orbit coupling together with the exchange field determines the valley polarization, which in turn controls valley and spin Hall conductivity in doped monolayer MoS2 system. The spin Hall and valley Hall conductivity is dissipationless in the absence of any external magnetic field. Therefore, our results are crucial to generate low power electronics devices.


2021 ◽  
Vol 7 (3) ◽  
pp. eabe0128
Author(s):  
Sachio Komori ◽  
James M. Devine-Stoneman ◽  
Kohei Ohnishi ◽  
Guang Yang ◽  
Zhanna Devizorova ◽  
...  

An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb. In the normal state of Nb, triplet supercurrents decay over a distance of 5 nm, which is an order of magnitude smaller than the decay of spin-singlet pairs due to the SOC. In the superconducting state of Nb, triplet supercurrents are not able to couple with the singlet wave function and are thus blocked by the absence of available equilibrium states in the singlet gap. The results offer insight into the dynamics between s-wave singlet and s-wave triplet states.


Author(s):  
Ilya A. Nechaev ◽  
Eugene Krasovskii

Abstract A theoretical study is presented of the effect of an in-plane magnetic exchange field on the band structure of centrosymmetric films of noble metals and topological insulators. Based on an ab initio relativistic k·p theory, a minimal effective model is developed that describes two coupled copies of a Rashba or Dirac electronic system residing at the opposite surfaces of the film. The coupling leads to a structural gap at Γ and causes an exotic redistribution of the spin density in the film when the exchange field is introduced. We apply the model to a nineteen-layer Au(111) film and to a five-quintuple-layer Sb2Te3 film. We demonstrate that at each film surface the exchange field induces spectrum distortions similar to those known for Rashba or Dirac surface states with an important difference due to the coupling: At some energies, one branch of the state loses its counterpart with the oppositely directed group velocity. This suggests that a large-angle electron scattering between the film surfaces through the interior of the film is dominant or even the only possible for such energies. The spin-density redistribution accompanying the loss of the counterpart favors this scattering channel.


1978 ◽  
Vol 39 (C6) ◽  
pp. C6-481-C6-483 ◽  
Author(s):  
K. Scharnberg ◽  
D. Fay ◽  
N. Schopohl

2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


Polyhedron ◽  
2021 ◽  
Vol 199 ◽  
pp. 115088
Author(s):  
Azadeh Mehrani ◽  
Maurice G. Sorolla ◽  
Tatyana Makarenko ◽  
Allan J. Jacobson

Sign in / Sign up

Export Citation Format

Share Document